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Abstract

Phase I data on time to toxicity of a new compound to treat early stage cancer are analyzed
as time to event data. Several nonlinear models are considered for changes in risk of the
toxicity event over time at various dose levels, with dependence changing after treatment
ends. Direct hazard modeling, instead a generalized regression model with a certain failure
time distribution, is used and shown to allow great flexibility for modeling dose dependency as
well as changes over time. This offers a viable compromise between a highly complex and time
consuming, mechanistic PK/PD-modeling approach and a less informative, purely empirical
approach.
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1 Introduction

One class of endpoints which is important in clinical trials involves time-to-event data, including
the special case of survival analysis. This kind of data is usually modeled using classical parametric
(accelerated failure time) or semi-parametric (Cox proportional hazards) models. These approaches
lack flexibility because they impose constraints either on the evolution of the hazard over time or
on the effect of covariates on the hazard. More general approaches are rare.*

In contrast to survival analysis, pharmacokineticists have developed the specialized and so-
phisticated area of pharmacokinetic/ pharmacodynamic (PK/PD) modeling which has gained mo-
mentum in the pharmaceutical industry.? These models are mechanistic in nature, describing the
behaviour of the drug in the human body, its effect on intermediate and clinical endpoints, as well
as within (intra) patient and between (inter) patient variability.

Alternatively, one can develop models which incorporate knowledge about the mechanism of
action in a more qualitative and less mechanistic way. These models are usually simpler in na-

ture but may be able to answer some of the questions of interest. However, they provide less

understanding of the underlying biological processes operating.



One important area of application of such models is at the design stage of a clinical trial. In
silico simulation of the outcome of a trial has received increasing attention in the pharmaceutical
industry over the last few years.®> The main goals of these simulations have been to assess the
probability of success of the trial and to explore the influence of known and unknown factors. To
achieve this, all available information and knowledge is incorporated in a formalized and structured
way into a model of drug action. In many trial simulations, the mechanistic PK/PD models are
used and it would be very useful if such models were also available for time to event studies.
Usually, significant statistical complexity is involved in this kind of modeling.

In this paper, we use the direct modeling of the hazard® to describe the time to onset of toxicity
in a Phase I clinical trial. We attempt to develop more mechanistic models, analogous to those

used in other areas of PK/PD.

2 The clinical trial

We shall develop a model for the occurrence of a sub-set of side effects during an eight-day, once-
daily treatment with drug X as a function of time and dose. Data are from a double-blind Phase I
clinical trial to evaluate the safety, pharmacokinetics, and pharmacodynamics of drug X, in which
49 healthy male subjects were included. The drug under development was expected to yield a
series of drug-related dermatological adverse events linked to the drug-class to which it belonged.
From prior experience with this class of compounds as well as related compounds available on the
market, a typical side-effect pattern could be derived. This encompassed skin rash, dryness of skin
and skin peeling with or without itch. These adverse events form a readily recognizable cluster so
that, for any subject, the onset of dermatological toxicity is assessed as an event or, more precisely,
as a change of state.

The trial was dose-escalating in sequential cohorts receiving doses d, 2d, 4d, 6d and 12d once
daily for eight consecutive days, followed by a follow-up period to at least 14 days (or longer in case
of side-effects). In each cohort, eight subjects were randomized to be treated either with tablets
with active drug X (six subjects) or with matching placebo-tablets (two subjects). In total, ten
subjects were on placebo and eight subjects on each dose (except seven on 12d). The data used
here are the time in days from the first medication intake to the onset of toxicity for each subject
which is defined as the onset of one of the adverse events mentioned earlier.

The data are summarized in Table 1. Figure 1 shows the Kaplan-Meier curves for the time to

onset of toxicity for each dose group. {From this, it is apparent that

e the time to onset decreases with dose with a clear separation between placebo, the highest

dose and all intermediate doses;

e in the placebo-group, only one event was observed on the third day of the treatment, whereas
in the highest dose group all subjects developed toxicity before the end of the eight-day

treatment period. In the lower dose groups, a limited number of events was seen the during



Table 1: Summary of the incidence and timing of skin toxicity.

Number of Number of events Number of events Total number

subjects on days 1-8 on days 9-12 of events
Placebo 10 1 0 1
d 8 3 0 3
2d 8 2 3 5
4d 8 1 3 4
6d 8 2 2 4
12d 7 7 0 7
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Figure 1: Kaplan-Meier curves for the time to onset of toxicity in the different treatment groups.
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Figure 2: Cumulative hazard plot for the onset of toxicity for the different treatment groups (S(t)

is the Kaplan-Meier survival estimate).

first four days of treatment, while a number events happened between days 9 and 12 after

the end of treatment.

Figure 2 shows a plot of the cumulative hazard for each treatment group. This plot shows a hazard
increase over time for the dose groups lower than 12d, which is sustained for several days after the

end of the treatment (day 8).

i From these observations it is clear that the model should accommodate the following features:

e the hazard increases during the 8-day treatment; the rate of increase seems dose-dependent

with a very low or maybe zero hazard during the first days of treatment;

e the hazard does not fall to zero for at least several days immediately after the end of treat-

ment.

Both features are compatible with the pharmacokinetic and pharmacological characteristics of drug
X. During the first days of treatment, plasma levels of the drug might be too low to have any toxic

effect. Distribution of the compound into the tissues might be another cause for the delay in onset



Table 2: Summary of the model fits.

Dose-dependence Time-dependence for log A Number of
for log A during treatment after treatment parameters  AIC
1 None None None 1 112.1
2 Factors None None 6 103.6
3 Linear None None 2 101.9
4  Exponential None None 2 102.6
5 Linear None Linear Decay 3 94.1
6 Exponential None Linear Decay 3 94.2
7 Linear None Exponential Decay 3 93.0
8 Exponential None Exponential Decay 3 93.1
9 Linear 3-parameter Hill  Linear Decay ) 94.2
10 Linear 2-parameter Hill  Linear Decay 4 93.2
11 Linear 2-parameter Hill  Exponential Decay 4 91.8
12 Exponential 2-parameter Hill  Linear Decay 4 93.8
13  Exponential 2-parameter Hill  Exponential Decay 4 92.6
14 Linear Linear Linear Decay 4 92.1
15 Linear Linear Exponential Decay 4 91.0

of toxicity. The delay might also be explained by the normal differentiation cycle of the skin cells.
Drug X affects the basal layers of the skin, whereas the side effects only become apparent when
these cells reach the surface of the skin. After treatment is stopped, plasma and tissue levels will
gradually decrease over time. Therefore the risk of toxicity will also gradually decrease as all drug
is eliminated from the body.

In order to incorporate these features into the model, we choose to model the hazard as a
function of time and dose instead of fitting a generalized regression model with different failure
time distributions. Event history modeling also allows the time to recovery from toxicity to be

easily included, although this will not be attempted here.

3 Model development

3.1 Time-invariant models

In this first set of models, the hazard is assumed to be constant during the total observation period.
This is clearly an oversimplification, but these models are considered as the simplest ones possible
with which more complex ones can be compared. The model with a constant hazard independent
of time and dose has one parameter and an AIC of 112.1 (Table 2). A model with six parameters, a

different constant hazard for each dose, results in a fair drop of the AIC to 103.6. When we consider



these two models as nested, a classical likelihood ratio test yields a 26.9 with 5 d.f. (p < 0.001).
The (constant over time) hazard thus differs between treatments.

A plot of the hazard estimate as a function of dose (not shown) suggests a linear relationship
between the log hazard and dose, at least for the active dose groups. The placebo hazard tends to
deviate from this. A linear model has an AIC of 101.9 which is slightly better than the previous
one. An exponential model for the log hazard, which might account for the low placebo hazard, is

not better (the AIC is higher than for the linear model).

3.2 Time-variant models
3.2.1 Hazard decrease after end of treatment

In these models, the hazard is allowed to decrease after the end of the treatment at day 8. The

general form of these models is:

log(\) = f(d) + I(t > taq)9(t — tenq)

where ¢ is the time (days) since the start of the treatment, d is the dose, and t,,4 is the day of
the last medication intake.

Two different models are considered:

1. log A decreases in a linear fashion with time after the end of treatment:
9(t —tenq) = alt —tenq)
2. log A decreases exponentially with time after the end of treatment. Here
gt —tepq) =1 —exp(—a(t —typq))

The first model is the simplest. The second makes sense from a pharmacokinetic point of
view because this implies an exponential decay of the log risk. Such a decay can be expected on
pharmacokinetic grounds if the log risk is directly related to the amount of drug in the body.

In combination with the linear and exponential dose-dependency models from Section 3.1, we
consider four models (Table 2, Models 5 to 8). All provide a considerable improvement compared
to the time-invariant models although the models with an exponential decay of log A after end of

treatment fit better. There is no difference here between dose-dependency models.

3.2.2 Hazard increases during the treatment period

As it is very plausible that the hazard is not constant during the eight-day period of treatment,
it was attempted to model the time-dependency using a Hill-equation.? This equation allows to
model a flexible range of sigmoid-shaped time courses :

Amaxt”
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where ¢ is the time (days) since the start of the treatment, A\yax is the maximal hazard (asymptote);
Ao.5 is the time at which the hazard equals half of its maximum, and b is the Hill-coefficient which
governs the steepness of the increase. After the end of treatment, ¢ retains it value to the last day
of the trial. Anax depends on dose either in a linear fashion or in an exponential fashion as before.
The general form of the models considered is as follows:

Amaxt"
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A model with a linear dose-dependency and a linear decay (Model 9) is not better than the
corresponding one with a constant hazard during treatment (Model 5). However, the estimate of
the Hill-coefficient was very close to 1. The same model with ~ = 1 (Model 10) is better than the
corresponding Model 5.

Models 10 to 13 correspond to Models 5 to 8 with regard to the dose-dependency and the
hazard decay after end of treatment. Here, those with exponential decay fit better. Model 11 is
best, also being an improvement over the one with constant hazard during treatment (Model 7).

Although Model 11 fits best of those considered so far, as judged by the AIC, there is a problem
with the parameter estimation. The normed likelihood surface (not shown) for the intercept of the
linear dose-dependency relation and A5 shows that the likelihood is extremely flat for the latter
parameter. The maximum likelihood estimate is 5\0_5 = 30 which is implausible because it is far
beyond the times observed. This indicates that the asymptote is not estimable so that a simpler
model would have a linear trend in time during treatment, resulting in Models 14 and 15. The
latter of these, with exponential decay after end of treatment fits best. Although these models
fit best, as judged by the AIC, they are probably not realistic. We would not expect the hazard
to continously increase during treatment, as this implies that when treating subjects with a low
dose or even placebo for a long enough period, everyone will develop toxicity. Extrapolation of the
model beyond the current treatment duration must be done with caution anyhow.

The fitted hazard functions for several of these models are plotted in Figure 3. Finally, Figure
4 shows the survival curves, giving the proportion of subjects not having had toxicity, predicted

by Model 15 as a function of time and dose.

4 Conclusion

The risk of developing toxicity due to drug X increases with dose during an eight-day treatment.
The log of the risk increases linearly with dose implying that the probability of a subject having
experienced toxicity at a given time point increases exponentially with dose. After the end of the
eight-day treatment, the risk of toxicity remains and gradually decreases to placebo levels in three
to four days. There is also evidence that the risk increases during the eight-day treatment period,
but the current data do not allow development of a model that adequately describes this.

The use of direct hazard modeling to describe the onset of toxiticy, instead of fitting a general-

ized regression model with a certain failure time distribution, allows great flexibility for modeling
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Figure 3: Fitted hazard functions for Models 3, 7, 11, and 15.




Proportion AE free

1.0

0.8

0.6

0.4

0.2

0.0

placebo \,

d N
2d hS
4d e

6d T -

12d

Time (days)

Figure 4: Survivor curves predicted by Model 15 as a function of time and dose.




dose dependency as well as changes over time. Although a formal pharmacokinetic model was
not used, qualitative knowledge about the pharmacokinetic and pharmacodynamic behaviour of
the compound was incorporated in the model. Given the mechanism of action of the drug, a
fully mechanistic PK/PD model would imply the use of indirect response models.?> The modeling
strategy presented here offers a compromise between a highly complex and time consuming, mech-
anistic PK/PD-modeling approach and a less informative, purely empirical approach. Usually a
fully mechanistic PK/PD-modeling approach is a challenging task due to the statistical complexity,
lack of enough data or time constraints. Depending on the objectives of the modeling excercise, a
simpler model can be useful. This is especially the case in the context of clinical trial simulation.
It has been recognized that in rich data sets the time course of a pharmacodynamic parameter may
contain enough information on the kinetics of the system to built a sensible simulation model.*
In the application of modeling and simulation in the design of clinical trials, finding a balance

between model realism and feasibility is an important challenge.
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