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Abstract

The h-likelihood approach of Lee and Nelder (1996) is here interpreted as a penalised
likelihood for estimation of doubly-constrained fixed effects that are shrinkage estimates similar
to those provided by random effect models. In this way, it can be extended to arbitrary
distributions, censored data, and nonlinear regression functions. The estimates of both the
random effect parameters and the variance components are directly available.

The new procedure is illustrated by application to a standard split-plot design and to the
nonlinear parameters of a pharmacokinetic one-compartment model with left-censored data.
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1 Introduction

When a cluster of multiple measurements is made on each of several individuals, random effects
(RE) models provide a useful approach to handling the heterogeneity among the individuals that
is not accounted for by the available inter-cluster covariates. Responses (y;;,7 = 1,...,7n;) in a
cluster i are assumed independent given one or more unobserved ‘variables’ or random effects.
(For simplicity in what follows, I shall restrict attention to one such random effect, although the
discussion extends immediately to the more general case.) Then, models can be constructed based
on a mixture distribution whereby these random effects are integrated out yielding a multivariate

distribution for the observations on each individual (of ¢):

I fwi, - yimi:0,6,0) = [[ / 1T fowislus; 8,0) | f1(us; o)dus (1)
i i J

where 6 is a vector of regression parameters, and ¢ and « are dispersion (or shape) parameters.

(Dispersion parameters will be defined so that they increase with their corresponding variances.)



Here, f1(-) is a density, whereas fo(-) may be a density or a discrete probability distribution de-
pending on the nature of y;;. The unobservable u disappear in the construction of the multivariate
distribution and need play no further role in the analysis. The model resulting from this procedure
then yields a likelihood function upon which inferences can be made.

A major drawback of such models is the integration which most often must be done numerically,
in several dimensions if there is more than one random effects. However, when fo(-) and fi(-) are
normal distributions, or the latter is the conjugate distribution of the former, the integration can
sometimes be performed analytically. Even in these cases, important exceptions occur when the
regression function is nonlinear in the unobserved random effects to be integrated out and/or the
observations are censored, both of which occur, for example, in applications of pharmacokinetic
compartment models. Thus, it would be valuable to have available a procedure which is easily
applicable for any arbitrary suitable distributions fo(-), and its cumulative distribution function
(cdf), and f1(-), with regression functions nonlinear in the unobserved random effects.

Let us call
I fwirs - yin; 0,6,u) = [T I fowislui; 0, ¢) (2)
i i g

the corresponding fixed effects (FE) model, where the w;s, suitably constrained, are the ¢ — 1
unknown FE parameters to be estimated along with 8 and ¢. In addition, call the model based
on fo(yi;j;0,¢), conditioning on available covariates, but not on the w;s, the null model. If an
appropriate mixing distribution has been selected for Equation (1), one might expect it to fit
better than the corresponding FE model of Equation (2) by model selection criteria such as the
AIC, because of the penalty for estimation of a much larger number of parameters in the latter.
Lee and Nelder (1996) introduced a different approach which, unlike the RE model, does not
require integration when fo(-) is a generalised linear model (GLM). Subsequently, they (2001a
& b) have somewhat widened the scope. They propose to base inferences on what they call an

h-likelihood:
[T/, yinis 0, 6,ui0) = TT T Fowisluss 8,6) I f1(us; ) (3)
i T i

where u is a vector of unknown parameters to be estimated, as in the FE model. However, this
h-likelihood is puzzling: it appears to be based on a model that contains ¢ — 1 more parameters to
estimate than the standard RE model of Equation (1) and one more («) than the corresponding
standard FE model in Equation (2). Is the latter parameter identifiable and can it be estimated?
On the other hand, arguments in favour of this approach include that integration is not required
and that shrinkage estimates are directly provided in place of the usual FE estimates.

The presentation of Lee and Nelder only covers GLMs which allow a rather restricted class
of distributions and linear regression functions, without censoring. Their estimation procedures
depend heavily on the special characteristics of the exponential dispersion family upon which

GLMs are based. The question, then, is if Equation (3) can be adapted in some way so that it



can be treated as an ordinary likelihood for models based on distributions outside the exponential
dispersion family in the presence of censoring and having regression functions nonlinear in the

unobserved random effects.

2 h-likelihoods

In a way similar to that used for ordinary GLMs, Lee and Nelder (1996, 2001a & b) do not use the
h-likelihood based on Equation (3) to estimate the dispersion parameters, but only € and u for fixed
values of ¢ and a. Their procedure for doing this depends heavily on the special characteristics of
the exponential dispersion family and hence cannot be used in the more general case considered

here.

2.1 h-likelihoods correspond to no model

For arbitrary distributions fo(-) and fi(-), possibly with a nonlinear regression function and/or
censoring, we must be able to maximise the h-likelihood globally over all parameters, as can be
done with any standard likelihood. However, an h-likelihood cannot be treated as an ordinary

likelihood for at least two reasons.

1. Equation (3) appears to correspond to a model that can yield the probability of the data for
fixed values of the parameters, including u. However, the sum or integral of the first factor
on the right over all possible values of y;; is unity so that multiplying by the second factor
will give a value less than or equal to one. Thus, the h-likelihood is does not correspond to

a true probability model. Normalising simply eliminates the second factor.

2. The h-likelihood based on Equation (3), when optimised over all parameters, has an infinite
maximum with all u; identical and « = 0 (that is, zero variance for the mixing distribution),
the null model. However, this problem does not occur in the Lee and Nelder approach because
they fix a at some finite nonzero value calculated by other procedures. An infinite likelihood
is characteristic of inappropriate use of a density instead of a probability in a likelihood
function; it can be eliminated by replacing the densities by differences of cdfs for some finite
unit of precision about the random variables so that the maximum of the h-likelihood is then

less than or equal to unity. Unfortunately, that does not solve the problem here.

I shall now outline ways in which these two problems can be overcome. In constructing an h-
likelihood, let Lo(@, @, us; y;5) represent the first factor on the right of Equation (3), L1 («, u;) the

second factor, and L(0, ¢, a, u;;y;;) their product.

2.2 h-likelihood estimates

The problematic parameter in this h-likelihood is «. Inspection of Equation (3) shows that this

parameter must be a function of the u;s. For example, in a random intercept model with fo() and



f1(*) both normal distributions, the estimate of the mixing variance is & = )_4?/t. The special
case of the null model with all u; = 0 has @ = 0. Thus, « is not, in fact, an additional parameter;
it is not identifiable. Let us look at this more closely.

Consider first optimising the second factor of the h-likelihood alone. For one fized u;, the

maximum is given by
lim Ly (o, u;) =1
a—0

(if based on probabilities; if based on densities, the maximum is infinite). However, in the complete
h-likelihood, there are several u;s and they are not fixed, but are unknown parameters. Thus,
consider next the simultaneous maximum of the product, [], Li(a,u;). This will still be unity
when a = 0, implying that all of the u;s are identical, corresponding to the null model.

Consider now the unconstrained maximum of the first factor in the h-likelihood, alone. This
corresponds to the FE model of Equation (2), yielding a value much smaller than one. Generally,
the values of the u;s estimated in this way will all be different unless all clusters are very similar.
Thus, this conflicts with optimisation of the second factor.

Now let us look at the two factors together. If the u;s in the second factor were set to the FE
values, this function would have a maximum when « is the dispersion of these values (for example,
the variance of the u;s when f;(-) is a normal distribution). This would also be very considerably
less than its unconstrained maximum of unity. Thus, the maximum of the complete h-likelihood,
Hij L(0, ¢, a,u;; yi5), should yield a compromise between the null and FE models, depending on
the value of . The structure of the h-likelihood should act to place a constraint on the FE u;
parameter values. However, this does not occur when « is estimated simultaneously with the wu;s,
instead of being fixed, because the second factor can reach one, greatly outweighing the first factor,
so that the overall maximum of the h-likelihood corresponds to the null model.

Thus, the problem is to obtain a value for a; the h-likelihood has a maximum at « = 0, pointing
to the null model. Lee and Nelder (1996) overcome this by using an adjusted h-likelihood in which

Equation (3) is multiplied by a multivariate normal distribution f5(-):
H f(yila <o Ying 07 ¢7 u, a) = H H fo(yij|ui; 07 ¢) H fl(ui; Oé)fQ(O, ¢H_1) (4)
i i i

where H is obtained from the GLM estimation procedure and involves «. They use this to iterate
between estimating @,u and ¢, so that this is in fact the ‘likelihood’ they are using, not the
h-likelihood Hij L(0, ¢, a,u;;y:5). Again, for the first reason given above for h-likelihoods, this
adjusted h-likelihood also does not correspond to a probability model.

The effect of including this additional factor is that « is no longer estimated only from 4?7 /t.
Thus, for example, in a linear regression model where fo(-) and f;(+) are both normal distributions,
with variances respectively ¢ and «, the estimate of a obtained from Equation (4) is a weighted
sum of the two variance estimates, ¢ and 3. @2/t. See the derivation by Lee and Nelder (1996)

following their Equation (4.8). The question is how to interpret this in a useful general way.



2.3 Doubly-constrained fixed effects

Consider first the classical normal-normal model. In the FE model with a different intercept in

each cluster,

Ui = Yit — i (@)

where p;(-) is the regression function fitted, not including u;. In the corresponding RE model,
Y;; given u; has conditional distribution fo(-), with variance ¢ and, from Equation (3), « is the
variance of the marginal distribution of the u;s. Y;; has marginal distribution given by Equation
(1) with variance ¢ + @, which can be estimated by b+ > 4?/t, essentially the estimate of «
obtained from the adjusted h-likelihood based on Equation (4).

Now let us look at arbitrary conditional and marginal distributions fo(-) and f;(-). Although, in
general, the variances will not be explicit parameters in the model, let o2 represent the conditional
variance of Yj; given u; and 0% the marginal variance of the u;s parametrised with some constraint,

such as sum zero or product one. Then, the former can be estimated by
65 =Y > lyij — (8, 0)*/ny
t g

where p;(-) is now some regression function possibly nonlinear in @,u. (ny might be adjusted by
the number of estimated parameters.)

Let us assume that the marginal distribution f; (-) is such that its dispersion or shape parameter
« is some function of o?: «a(c?). Examples of such distributions include the normal, gamma,
inverse Gauss, Weibull, and beta, and modifications of them such as the log normal and inverse
gamma,; distributions with infinite variance, such as the Cauchy, must be excluded. Then, I
propose to estimate this parameter, not by & = «(6}) as when Equation (3) is optimised, but by
& = a(63 + 6%). For example, in the classical normal-normal linear model, o will be estimated
by the marginal variance of Y;;, 63 + Y 4?/t, as described above. Using this relationship, we can
maximise the h-likelihood in Equation (3) directly in one step using a nonlinear optimiser. Because
the estimate of « is constrained away from zero by the inclusion of ¢, this generalised h-likelihood
function is prevented from going to infinity.

This procedure can be interpreted in the following way. Consider the FE model of Equation
(2). The FE parameters u; have some constraint such as sum zero or product one, so that ¢ — 1
independent estimates are obtained from the corresponding likelihood. Now introduce a second
constraint. Not only will the mean of these parameters (or their logarithm) be zero but they will
have some chosen distribution f;(-) with variance o2 +o7. With these two constraints incorporated
into the model, t — 2 independent estimates need to be estimated from the h-likelihood, one less
than for the corresponding FE model. Let us call this the doubly-constrained FE model.

The first constraint can be introduced into the standard likelihood based on Equation (2)

directly in the usual way. However, point estimation using the second requires that this likelihood

be multiplied by fi(-), yielding the h-likelihood of Equation (3), a form of penalised likelihood.



Then, this function must be maximised using & = a(63 +6%). On the other hand, the likelihood for
making inferences about the doubly-constrained FE model, such as model selection, remains that
based on Equation (2). The h-likelihood is an estimation procedure, a form of penalised likelihood
for introducing an additional constraint on the u;s, not an ordinary likelihood function.

Note that the choice of the way in which a depends on the other parameters, here via a = (03 +
S>> u?/t), only determines the constraint placed on the w;. It does not involve any approximate
inference procedure, as do the derivation of the adjusted h-likelihood of Equation (4) or quasi-

likelihood.

2.4 Goodness of fit

In complex models outside the exponential family, standard procedures for goodness of fit, such as
examination of residuals, are generally of little use for indicating problems with a model and for
suggesting alternatives. The interpretation of h-likelihood as an ordinary FE likelihood penalised
by an additional constraint on the FE parameters allows us to use the likelihood based on Equation
(2), not the h-likelihood, in model selection criteria, such as the AIC or BIC.

One example used by Lee and Nelder (1996) is the seed germination data of Crowder (1978).
As shown by Lindsey (1999), there is little evidence of overdispersion in these data. Because Lee
and Nelder do not have available an objective model selection criterion, they do not realise that
the model based on their h-likelihood fits no better than the ordinary binomial model. A standard
binomial GLM has an AIC (negative log likelihood plus the number of estimated parameters) of
58.9 as compared to 58.8 for the corresponding beta-binomial model which has been penalised for
one extra parameter. A binomial generalised linear mixed model (GLMM) for overdispersion, with
normal mixing distribution, has an AIC of 58.6, again with one more parameter than the standard
binomial model. According to Lee and Nelder (1996), the latter analysis is essentially similar to
their h-likelihood.

Thus, some objective model selection criterion is essential when doing any model fitting, both

to obtain reasonably fitting models and to avoid overfitting as in this example.

3 Examples

3.1 Chocolate cakes

A second example used by Lee and Nelder (1996) involves the breaking angle of chocolate cakes,
from Cochran and Cox (1957, p. 300). For these data, there are 15 clusters (the replications) with
18 observations in each (three recipes at each of six temperatures).

All approaches point to a model with differences among replications and recipes and a linear
trend in temperature, so that I shall only discuss this. Consider first the classical analysis of

Cochran and Cox using a normal distribution. Applying maximum likelihood to the RE model, we



Table 1: Estimates of replication effects from various models fitted to the chocolate cake data with
their standard errors (s.e.). The last replicate has effect equal to minus the sum of the others.

Those for the gamma-inverse gamma are on the log scale.

Normal-normal Gamma-inverse gamma

Fixed Doubly-constrained FE Fixed Doubly-constrained FE

1 14.71 14.30 0.397 0.410
2 13.43 13.06 0.365 0.379
3 4.82 4.69 0.155 0.169
4 1.16 1.13 0.057 0.070
5 0.27 0.27 0.020 0.035
6 —3.40 -3.30 —0.094 —0.081
7T —4.79 —4.66 —0.152 —0.136
8§ —4.73 —4.60 —0.146 —0.132
9 —4.79 —4.66 —0.144 —0.131
10 -3.29 -3.20 —0.094 —0.080
11 -2.23 —-2.17 —0.053 —0.040
12 -1.18 —-1.15 —0.023 —0.009
13 -0.23 —0.23 0.014 0.030
14 —4.23 —4.12 -0.131 —0.116
15 =551 —5.36 —-0.172 —0.158
s.e. 1.06 1.04 0.033 0.031

find the estimated variance components to be 22.89 and 36.52. (In fact, recipes are nested within
replications, giving variance estimates 19.11, 35.57, and 3.47, but, following both Cochran and Cox
and Lee and Nelder, I shall ignore this in what follows.) The corresponding point estimates using
the doubly-constrained FE model are 21.65 and 35.72. Thus, these penalised estimates, obtained
without integration, are very close to those from the RE model. The FE and corresponding
shrinkage estimates are shown in the first two columns of Table 1. Because of the large number of
observations within each cluster (replication), little shrinkage occurs.

Lee and Nelder (1996), following Firth and Harris (1991), use a multiplicative model (log link)
with constant coefficient of dispersion (gamma distribution) and the conjugate mixing distribution.
To obtain this here, I shall modify the above model in three steps, changing sequentially the link
from identity to log, fo(-) from normal to gamma, and f; (-) from normal to inverse gamma. As can
be seen in Table 2, introducing a log link does not improve the fit. On the other hand, introducing
the gamma conditional distribution for fo(-) does improve it. Again, the doubly-constrained FE
model provides a somewhat better fit than the FE model, with almost no shrinkage.

Lee and Nelder (1996) use a gamma distribution with log link and inverse gamma mixing



Table 2: AICs for various models fitted to the chocolate cake data.

fo() Normal Normal Gamma

Link Identity Log Log

Null model 939.5 939.6 921.3

Fixed effect 817.0 817.0 808.2

fi() Normal Inverse Normal Inverse Normal Inverse
gamma gamma gamma

Random effect 837.2 834.6 837.5 835.7 826.0 826.5

Doubly-constrained FE =~ 816.2 816.3 816.8 816.9 807.2 807.2

distribution; this is the third step. As seen in Table 2, the inverse gamma mixing distribution does
not fit better than the normal. The FE and corresponding shrinkage estimates are shown in the
last two columns in Table 1.

Lee and Nelder (1996) estimate the shape parameter of the inverse gamma mixing distribution
to be 219.1. With my procedure, the estimate is 41.2, but the likelihood is almost constant over
a wide range of values. With fixed mean, the variance is the reciprocal of these values. Lee and
Nelder claim that their residual plots point to the inverse gamma mixing distribution in preference
to the normal mixing distribution, but these plots can be misleading and are always subjective. A
gamma or inverse gamma distribution with such a small variance is virtually identical to a normal
distribution with the same variance. The RE model with normal mixing distribution has a slightly
larger likelihood (with the same number of parameters estimated) and the two doubly-constrained
FE models both show the same fit, slightly better than the FE model.

It is interesting to note that, although not the best model, the normal conditional distribution
RE model, whether with identity or log link, fits better with the inverse gamma mixing distribution

than with the more usual normal mixing distribution, as can also be seen in Table 2.

3.2 Pharmacokinetic compartment models

Lindsey et al. (2000) analyse Phase I pharmacokinetic data concerning concentrations of flosequinan
and its metabolite in 18 healthy volunteers. They found that a gamma distribution was required

with a first-order one-compartment model

describing the mean concentration over time, where the absorption rate k,, the elimination rate
ke, and the volume V' are parameters to be estimated, d is the dose administered, and ¢ is time.
They also showed that it is important to model the left-censoring due to undetectably small values

and to use an appropriate function for the change in dispersion over time. For the latter, they use

Equation (5) raised to a power, an additional parameter, where all four parameters have different



Table 3: AICs for the FE models fitted to the flosequinan data.

Log normal Gamma

Null 563.9 548.9
Absorption 545.2 543.4
Elimination 471.4 426.6
Volume 550.2 491.6

Table 4: AICs for the FE, RE, and doubly-constrained FE models for the elimination rate with a

gamma conditional distribution, fitted to the flosequinan data.

Mixing distribution Normal Gamma
Fixed effect 426.6
Random effect 460.9 458.7

Doubly-constrained FE =~ 425.7 425.7

values than in the regression function for the mean. However, the only dependencies that they
considered were those accounted for by FE models or by covariates.

Here, I shall apply random effects and the doubly-constrained FE model to the three nonlinear
parameters individually, using an appropriate regression function for the dispersion parameter and
allowing for left censoring. I shall compare the results from the standard log normal distribution
with those from the gamma distribution. For simplicity, I shall only consider the lowest dose level
of the parent drug, flosequinan. For this subset of the data, there are 12 observations over time
for each of the 18 subjects and 111 nondetectable values out of 216 observations. Two individuals
have extreme curves (numbers 12 and 18), both higher than the others.

Inspection of the fits of the FE models in Table 3 shows that differences in the elimination rate
explain the most variability among the individual curves. As for the complete data set, the gamma
distribution fits much better than the log normal.

Let us now look at the RE and doubly-constrained FE models for the elimination rate, with
the gamma conditional distribution and using normal and gamma mixing distributions. As can be
seen in Table 4, the doubly-constrained FE models fit somewhat better than the FE model, and
much better than the corresponding RE models. There is little difference among the two mixing
distributions. The differences in log elimination rate for each subject are shown in Table 5 using
the three models. Here, there is virtually no shrinkage. Individuals 12 and 18 clearly stand out as
extreme, with lower elimination rates.

If the left-censored nondetectable values are set to one-half the detectable level and the density
is used for them instead of the cdf, the FE and doubly-constrained FE models for the elimination

parameter converge to the null model with an AIC of about 632, much worse than those that allow



Table 5: Estimates of individual effects for the log elimination rate from models fitted to the
flosequinan data with their standard errors for the gamma conditional distribution with normal

and gamma mixing distributions.

Fixed Doubly-constrained FE

Normal Gamma

1 0.30 0.29 0.12
2 0.05 0.05 —0.12
3 0.57 0.56 0.38
4 0.60 0.59 0.41
5 0.93 0.92 0.75
6 —0.04 —0.04 —0.22
7 0.38 0.37 0.19
8 0.48 0.47 0.30
9 0.26 0.25 0.08
10 0.61 0.60 0.42
11  -0.32 —0.31 —0.49
12 -1.64 —1.62 —1.80
13 —-0.26 —0.26 —0.43
14 0.15 0.15 —0.03
15 —-0.42 —0.41 —0.59
16  —0.09 —0.08 —0.26
17 0.24 0.24 0.06
18 -1.79 —1.77 —1.95
s.e. 0.10 0.07 0.06
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correctly for censoring. As with the models fitted to the complete data set by Lindsey et al. (2000),

the compartment model curve is greatly distorted.

4 Discussion

Penalties on the likelihood have been used in two different ways here. The h-likelihood involves a
penalty that places a constraint on the parameters in the statistical model, used in their point esti-
mation. This penalty is not used in the model selection process once estimates with the constraint
have been obtained. On the other hand, the AIC and other model selection criteria involve a
penalty on the complexity of the model. These do not affect the point estimates of the parameters
of a given model, but provide an objective procedure for comparing distinct models.

If the ‘correct’ mixing distribution fi(-) were chosen, one might expect that the RE model
would fit better than the corresponding FE model, whether with one or two constraints, because
the latter has a large number of parameters estimated. This, however, will depend both on the
amount of information available within each cluster and on the penalty imposed. As is well known,
the BIC may indicate a simpler model than the AIC. For the cake data, the BIC gives a small
advantage to the RE model whereas, for the pharmacokinetic data, it points strongly to the FE
and doubly-constrained FE models over the RE one.

A likelihood function plays several roles in the analysis of data.

1. It corresponds to some probabilistic representation of the observed data, containing unknown

parameters.
2. By its maximisation, it allows point estimates of these parameters to be calculated.
3. By study of its shape, the precision of these estimates can be determined.

The h-likelihood of Lee and Nelder (1996) fulfils none of these criteria, although their adjusted h-
likelihood does meet point 2. On the other hand, the interpretation of the h-likelihood as applying
one additional constraint to the standard FE model to bring it closer to the RE model allows
Equation (2) to be interpreted as a standard likelihood. The estimation procedure proposed above
allows a wide class of models to be fitted to clustered data involving censoring and nonlinear
regression functions.

All of the models used in the examples above can be routinely fitted using my libraries for R
available at www.luc.ac.be/~jlindsey/rcode.html. The random effects models are fitted by
Romberg integration, except for certain with the normal mixing distribution for which the faster

Gauss-Hermite integration may used.
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