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Abstra
t

The h-likelihood approa
h of Lee and Nelder (1996) is here interpreted as a penalised

likelihood for estimation of doubly-
onstrained �xed e�e
ts that are shrinkage estimates similar

to those provided by random e�e
t models. In this way, it 
an be extended to arbitrary

distributions, 
ensored data, and nonlinear regression fun
tions. The estimates of both the

random e�e
t parameters and the varian
e 
omponents are dire
tly available.

The new pro
edure is illustrated by appli
ation to a standard split-plot design and to the

nonlinear parameters of a pharma
okineti
 one-
ompartment model with left-
ensored data.
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1 Introdu
tion

When a 
luster of multiple measurements is made on ea
h of several individuals, random e�e
ts

(RE) models provide a useful approa
h to handling the heterogeneity among the individuals that

is not a

ounted for by the available inter-
luster 
ovariates. Responses (y

ij

; j = 1; : : : ; n

i

) in a


luster i are assumed independent given one or more unobserved `variables' or random e�e
ts.

(For simpli
ity in what follows, I shall restri
t attention to one su
h random e�e
t, although the

dis
ussion extends immediately to the more general 
ase.) Then, models 
an be 
onstru
ted based

on a mixture distribution whereby these random e�e
ts are integrated out yielding a multivariate

distribution for the observations on ea
h individual (of t):
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where � is a ve
tor of regression parameters, and � and � are dispersion (or shape) parameters.

(Dispersion parameters will be de�ned so that they in
rease with their 
orresponding varian
es.)
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Here, f

1

(�) is a density, whereas f

0

(�) may be a density or a dis
rete probability distribution de-

pending on the nature of y

ij

. The unobservable u disappear in the 
onstru
tion of the multivariate

distribution and need play no further role in the analysis. The model resulting from this pro
edure

then yields a likelihood fun
tion upon whi
h inferen
es 
an be made.

A major drawba
k of su
h models is the integration whi
h most often must be done numeri
ally,

in several dimensions if there is more than one random e�e
ts. However, when f

0

(�) and f

1

(�) are

normal distributions, or the latter is the 
onjugate distribution of the former, the integration 
an

sometimes be performed analyti
ally. Even in these 
ases, important ex
eptions o

ur when the

regression fun
tion is nonlinear in the unobserved random e�e
ts to be integrated out and/or the

observations are 
ensored, both of whi
h o

ur, for example, in appli
ations of pharma
okineti



ompartment models. Thus, it would be valuable to have available a pro
edure whi
h is easily

appli
able for any arbitrary suitable distributions f

0

(�), and its 
umulative distribution fun
tion

(
df), and f

1

(�), with regression fun
tions nonlinear in the unobserved random e�e
ts.

Let us 
all
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the 
orresponding �xed e�e
ts (FE) model, where the u

i

s, suitably 
onstrained, are the t � 1

unknown FE parameters to be estimated along with � and �. In addition, 
all the model based

on f

0

(y

ij

;�; �), 
onditioning on available 
ovariates, but not on the u

i

s, the null model. If an

appropriate mixing distribution has been sele
ted for Equation (1), one might expe
t it to �t

better than the 
orresponding FE model of Equation (2) by model sele
tion 
riteria su
h as the

AIC, be
ause of the penalty for estimation of a mu
h larger number of parameters in the latter.

Lee and Nelder (1996) introdu
ed a di�erent approa
h whi
h, unlike the RE model, does not

require integration when f

0

(�) is a generalised linear model (GLM). Subsequently, they (2001a

& b) have somewhat widened the s
ope. They propose to base inferen
es on what they 
all an

h-likelihood:
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where u is a ve
tor of unknown parameters to be estimated, as in the FE model. However, this

h-likelihood is puzzling: it appears to be based on a model that 
ontains t� 1 more parameters to

estimate than the standard RE model of Equation (1) and one more (�) than the 
orresponding

standard FE model in Equation (2). Is the latter parameter identi�able and 
an it be estimated?

On the other hand, arguments in favour of this approa
h in
lude that integration is not required

and that shrinkage estimates are dire
tly provided in pla
e of the usual FE estimates.

The presentation of Lee and Nelder only 
overs GLMs whi
h allow a rather restri
ted 
lass

of distributions and linear regression fun
tions, without 
ensoring. Their estimation pro
edures

depend heavily on the spe
ial 
hara
teristi
s of the exponential dispersion family upon whi
h

GLMs are based. The question, then, is if Equation (3) 
an be adapted in some way so that it
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an be treated as an ordinary likelihood for models based on distributions outside the exponential

dispersion family in the presen
e of 
ensoring and having regression fun
tions nonlinear in the

unobserved random e�e
ts.

2 h-likelihoods

In a way similar to that used for ordinary GLMs, Lee and Nelder (1996, 2001a & b) do not use the

h-likelihood based on Equation (3) to estimate the dispersion parameters, but only � and u for �xed

values of � and �. Their pro
edure for doing this depends heavily on the spe
ial 
hara
teristi
s of

the exponential dispersion family and hen
e 
annot be used in the more general 
ase 
onsidered

here.

2.1 h-likelihoods 
orrespond to no model

For arbitrary distributions f

0

(�) and f

1

(�), possibly with a nonlinear regression fun
tion and/or


ensoring, we must be able to maximise the h-likelihood globally over all parameters, as 
an be

done with any standard likelihood. However, an h-likelihood 
annot be treated as an ordinary

likelihood for at least two reasons.

1. Equation (3) appears to 
orrespond to a model that 
an yield the probability of the data for

�xed values of the parameters, in
luding u. However, the sum or integral of the �rst fa
tor

on the right over all possible values of y

ij

is unity so that multiplying by the se
ond fa
tor

will give a value less than or equal to one. Thus, the h-likelihood is does not 
orrespond to

a true probability model. Normalising simply eliminates the se
ond fa
tor.

2. The h-likelihood based on Equation (3), when optimised over all parameters, has an in�nite

maximum with all u

i

identi
al and � = 0 (that is, zero varian
e for the mixing distribution),

the null model. However, this problem does not o

ur in the Lee and Nelder approa
h be
ause

they �x � at some �nite nonzero value 
al
ulated by other pro
edures. An in�nite likelihood

is 
hara
teristi
 of inappropriate use of a density instead of a probability in a likelihood

fun
tion; it 
an be eliminated by repla
ing the densities by di�eren
es of 
dfs for some �nite

unit of pre
ision about the random variables so that the maximum of the h-likelihood is then

less than or equal to unity. Unfortunately, that does not solve the problem here.

I shall now outline ways in whi
h these two problems 
an be over
ome. In 
onstru
ting an h-

likelihood, let L

0

(�; �; u

i

; y

ij

) represent the �rst fa
tor on the right of Equation (3), L

1

(�; u

i

) the

se
ond fa
tor, and L(�; �; �; u

i

; y

ij

) their produ
t.

2.2 h-likelihood estimates

The problemati
 parameter in this h-likelihood is �. Inspe
tion of Equation (3) shows that this

parameter must be a fun
tion of the u

i

s. For example, in a random inter
ept model with f

0

(�) and
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f

1

(�) both normal distributions, the estimate of the mixing varian
e is �̂ =

P

û

2

i

=t. The spe
ial


ase of the null model with all u

i

= 0 has �̂ = 0. Thus, � is not, in fa
t, an additional parameter;

it is not identi�able. Let us look at this more 
losely.

Consider �rst optimising the se
ond fa
tor of the h-likelihood alone. For one �xed u

i

, the

maximum is given by

lim

�!0

L

1

(�; u

i

) = 1

(if based on probabilities; if based on densities, the maximum is in�nite). However, in the 
omplete

h-likelihood, there are several u

i

s and they are not �xed, but are unknown parameters. Thus,


onsider next the simultaneous maximum of the produ
t,

Q

i

L

1

(�; u

i

). This will still be unity

when � = 0, implying that all of the u

i

s are identi
al, 
orresponding to the null model.

Consider now the un
onstrained maximum of the �rst fa
tor in the h-likelihood, alone. This


orresponds to the FE model of Equation (2), yielding a value mu
h smaller than one. Generally,

the values of the u

i

s estimated in this way will all be di�erent unless all 
lusters are very similar.

Thus, this 
on
i
ts with optimisation of the se
ond fa
tor.

Now let us look at the two fa
tors together. If the u

i

s in the se
ond fa
tor were set to the FE

values, this fun
tion would have a maximum when � is the dispersion of these values (for example,

the varian
e of the u

i

s when f

1

(�) is a normal distribution). This would also be very 
onsiderably

less than its un
onstrained maximum of unity. Thus, the maximum of the 
omplete h-likelihood,

Q

ij

L(�; �; �; u

i

; y

ij

), should yield a 
ompromise between the null and FE models, depending on

the value of �. The stru
ture of the h-likelihood should a
t to pla
e a 
onstraint on the FE u

i

parameter values. However, this does not o

ur when � is estimated simultaneously with the u

i

s,

instead of being �xed, be
ause the se
ond fa
tor 
an rea
h one, greatly outweighing the �rst fa
tor,

so that the overall maximum of the h-likelihood 
orresponds to the null model.

Thus, the problem is to obtain a value for �; the h-likelihood has a maximum at � = 0, pointing

to the null model. Lee and Nelder (1996) over
ome this by using an adjusted h-likelihood in whi
h

Equation (3) is multiplied by a multivariate normal distribution f

2

(�):
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where H is obtained from the GLM estimation pro
edure and involves �. They use this to iterate

between estimating �;u and �; � so that this is in fa
t the `likelihood' they are using, not the

h-likelihood

Q

ij

L(�; �; �; u

i

; y

ij

). Again, for the �rst reason given above for h-likelihoods, this

adjusted h-likelihood also does not 
orrespond to a probability model.

The e�e
t of in
luding this additional fa
tor is that � is no longer estimated only from

P

û

2

i

=t.

Thus, for example, in a linear regression model where f

0

(�) and f

1

(�) are both normal distributions,

with varian
es respe
tively � and �, the estimate of � obtained from Equation (4) is a weighted

sum of the two varian
e estimates,

^

� and

P

û

2

i

=t. See the derivation by Lee and Nelder (1996)

following their Equation (4.8). The question is how to interpret this in a useful general way.
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2.3 Doubly-
onstrained �xed e�e
ts

Consider �rst the 
lassi
al normal-normal model. In the FE model with a di�erent inter
ept in

ea
h 
luster,

bu

i

= �y

i+

� �

i

(

b

�)

where �

i

(�) is the regression fun
tion �tted, not in
luding u

i

. In the 
orresponding RE model,

Y

ij

given u

i

has 
onditional distribution f

0

(�), with varian
e � and, from Equation (3), � is the

varian
e of the marginal distribution of the u

i

s. Y

ij

has marginal distribution given by Equation

(1) with varian
e � + �, whi
h 
an be estimated by

^

� +

P

û

2

i

=t, essentially the estimate of �

obtained from the adjusted h-likelihood based on Equation (4).

Now let us look at arbitrary 
onditional and marginal distributions f

0

(�) and f

1

(�). Although, in

general, the varian
es will not be expli
it parameters in the model, let �

2

0

represent the 
onditional

varian
e of Y

ij

given u

i

and �

2

1

the marginal varian
e of the u

i

s parametrised with some 
onstraint,

su
h as sum zero or produ
t one. Then, the former 
an be estimated by

�̂

2

0

=

X

i

X

j

[y

ij

� �

i

(

b

�;
^
u)℄

2

=n

+

where �

i

(�) is now some regression fun
tion possibly nonlinear in �;u. (n

+

might be adjusted by

the number of estimated parameters.)

Let us assume that the marginal distribution f

1

(�) is su
h that its dispersion or shape parameter

� is some fun
tion of �

2

1

: �(�

2

1

). Examples of su
h distributions in
lude the normal, gamma,

inverse Gauss, Weibull, and beta, and modi�
ations of them su
h as the log normal and inverse

gamma; distributions with in�nite varian
e, su
h as the Cau
hy, must be ex
luded. Then, I

propose to estimate this parameter, not by �̂ = �(�̂

2

1

) as when Equation (3) is optimised, but by

�̂ = �(�̂

2

0

+ �̂

2

1

). For example, in the 
lassi
al normal-normal linear model, � will be estimated

by the marginal varian
e of Y

ij

, �̂

2

0

+

P

û

2

i

=t, as des
ribed above. Using this relationship, we 
an

maximise the h-likelihood in Equation (3) dire
tly in one step using a nonlinear optimiser. Be
ause

the estimate of � is 
onstrained away from zero by the in
lusion of �

2

0

, this generalised h-likelihood

fun
tion is prevented from going to in�nity.

This pro
edure 
an be interpreted in the following way. Consider the FE model of Equation

(2). The FE parameters u

i

have some 
onstraint su
h as sum zero or produ
t one, so that t � 1

independent estimates are obtained from the 
orresponding likelihood. Now introdu
e a se
ond


onstraint. Not only will the mean of these parameters (or their logarithm) be zero but they will

have some 
hosen distribution f

1

(�) with varian
e �

2

0

+�

2

1

. With these two 
onstraints in
orporated

into the model, t � 2 independent estimates need to be estimated from the h-likelihood, one less

than for the 
orresponding FE model. Let us 
all this the doubly-
onstrained FE model.

The �rst 
onstraint 
an be introdu
ed into the standard likelihood based on Equation (2)

dire
tly in the usual way. However, point estimation using the se
ond requires that this likelihood

be multiplied by f

1

(�), yielding the h-likelihood of Equation (3), a form of penalised likelihood.
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Then, this fun
tion must be maximised using �̂ = �(�̂

2

0

+�̂

2

1

). On the other hand, the likelihood for

making inferen
es about the doubly-
onstrained FE model, su
h as model sele
tion, remains that

based on Equation (2). The h-likelihood is an estimation pro
edure, a form of penalised likelihood

for introdu
ing an additional 
onstraint on the u

i

s, not an ordinary likelihood fun
tion.

Note that the 
hoi
e of the way in whi
h � depends on the other parameters, here via � = �(�

2

0

+

P

u

2

i

=t), only determines the 
onstraint pla
ed on the u

i

. It does not involve any approximate

inferen
e pro
edure, as do the derivation of the adjusted h-likelihood of Equation (4) or quasi-

likelihood.

2.4 Goodness of �t

In 
omplex models outside the exponential family, standard pro
edures for goodness of �t, su
h as

examination of residuals, are generally of little use for indi
ating problems with a model and for

suggesting alternatives. The interpretation of h-likelihood as an ordinary FE likelihood penalised

by an additional 
onstraint on the FE parameters allows us to use the likelihood based on Equation

(2), not the h-likelihood, in model sele
tion 
riteria, su
h as the AIC or BIC.

One example used by Lee and Nelder (1996) is the seed germination data of Crowder (1978).

As shown by Lindsey (1999), there is little eviden
e of overdispersion in these data. Be
ause Lee

and Nelder do not have available an obje
tive model sele
tion 
riterion, they do not realise that

the model based on their h-likelihood �ts no better than the ordinary binomial model. A standard

binomial GLM has an AIC (negative log likelihood plus the number of estimated parameters) of

58.9 as 
ompared to 58.8 for the 
orresponding beta-binomial model whi
h has been penalised for

one extra parameter. A binomial generalised linear mixed model (GLMM) for overdispersion, with

normal mixing distribution, has an AIC of 58.6, again with one more parameter than the standard

binomial model. A

ording to Lee and Nelder (1996), the latter analysis is essentially similar to

their h-likelihood.

Thus, some obje
tive model sele
tion 
riterion is essential when doing any model �tting, both

to obtain reasonably �tting models and to avoid over�tting as in this example.

3 Examples

3.1 Cho
olate 
akes

A se
ond example used by Lee and Nelder (1996) involves the breaking angle of 
ho
olate 
akes,

from Co
hran and Cox (1957, p. 300). For these data, there are 15 
lusters (the repli
ations) with

18 observations in ea
h (three re
ipes at ea
h of six temperatures).

All approa
hes point to a model with di�eren
es among repli
ations and re
ipes and a linear

trend in temperature, so that I shall only dis
uss this. Consider �rst the 
lassi
al analysis of

Co
hran and Cox using a normal distribution. Applying maximum likelihood to the RE model, we
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Table 1: Estimates of repli
ation e�e
ts from various models �tted to the 
ho
olate 
ake data with

their standard errors (s.e.). The last repli
ate has e�e
t equal to minus the sum of the others.

Those for the gamma-inverse gamma are on the log s
ale.

Normal-normal Gamma-inverse gamma

Fixed Doubly-
onstrained FE Fixed Doubly-
onstrained FE

1 14.71 14.30 0.397 0.410

2 13.43 13.06 0.365 0.379

3 4.82 4.69 0.155 0.169

4 1.16 1.13 0.057 0.070

5 0.27 0.27 0.020 0.035

6 �3:40 �3:30 �0:094 �0:081

7 �4:79 �4:66 �0:152 �0:136

8 �4:73 �4:60 �0:146 �0:132

9 �4:79 �4:66 �0:144 �0:131

10 �3:29 �3:20 �0:094 �0:080

11 �2:23 �2:17 �0:053 �0:040

12 �1:18 �1:15 �0:023 �0:009

13 �0:23 �0:23 0.014 0.030

14 �4:23 �4:12 �0:131 �0:116

15 �5:51 �5:36 �0:172 �0:158

s.e. 1.06 1.04 0.033 0.031

�nd the estimated varian
e 
omponents to be 22.89 and 36.52. (In fa
t, re
ipes are nested within

repli
ations, giving varian
e estimates 19.11, 35.57, and 3.47, but, following both Co
hran and Cox

and Lee and Nelder, I shall ignore this in what follows.) The 
orresponding point estimates using

the doubly-
onstrained FE model are 21.65 and 35.72. Thus, these penalised estimates, obtained

without integration, are very 
lose to those from the RE model. The FE and 
orresponding

shrinkage estimates are shown in the �rst two 
olumns of Table 1. Be
ause of the large number of

observations within ea
h 
luster (repli
ation), little shrinkage o

urs.

Lee and Nelder (1996), following Firth and Harris (1991), use a multipli
ative model (log link)

with 
onstant 
oeÆ
ient of dispersion (gamma distribution) and the 
onjugate mixing distribution.

To obtain this here, I shall modify the above model in three steps, 
hanging sequentially the link

from identity to log, f

0

(�) from normal to gamma, and f

1

(�) from normal to inverse gamma. As 
an

be seen in Table 2, introdu
ing a log link does not improve the �t. On the other hand, introdu
ing

the gamma 
onditional distribution for f

0

(�) does improve it. Again, the doubly-
onstrained FE

model provides a somewhat better �t than the FE model, with almost no shrinkage.

Lee and Nelder (1996) use a gamma distribution with log link and inverse gamma mixing

7



Table 2: AICs for various models �tted to the 
ho
olate 
ake data.

f

0

(�) Normal Normal Gamma

Link Identity Log Log

Null model 939.5 939.6 921.3

Fixed e�e
t 817.0 817.0 808.2

f

1

(�) Normal Inverse Normal Inverse Normal Inverse

gamma gamma gamma

Random e�e
t 837.2 834.6 837.5 835.7 826.0 826.5

Doubly-
onstrained FE 816.2 816.3 816.8 816.9 807.2 807.2

distribution; this is the third step. As seen in Table 2, the inverse gamma mixing distribution does

not �t better than the normal. The FE and 
orresponding shrinkage estimates are shown in the

last two 
olumns in Table 1.

Lee and Nelder (1996) estimate the shape parameter of the inverse gamma mixing distribution

to be 219.1. With my pro
edure, the estimate is 41.2, but the likelihood is almost 
onstant over

a wide range of values. With �xed mean, the varian
e is the re
ipro
al of these values. Lee and

Nelder 
laim that their residual plots point to the inverse gamma mixing distribution in preferen
e

to the normal mixing distribution, but these plots 
an be misleading and are always subje
tive. A

gamma or inverse gamma distribution with su
h a small varian
e is virtually identi
al to a normal

distribution with the same varian
e. The RE model with normal mixing distribution has a slightly

larger likelihood (with the same number of parameters estimated) and the two doubly-
onstrained

FE models both show the same �t, slightly better than the FE model.

It is interesting to note that, although not the best model, the normal 
onditional distribution

RE model, whether with identity or log link, �ts better with the inverse gamma mixing distribution

than with the more usual normal mixing distribution, as 
an also be seen in Table 2.

3.2 Pharma
okineti
 
ompartment models

Lindsey et al. (2000) analyse Phase I pharma
okineti
 data 
on
erning 
on
entrations of 
osequinan

and its metabolite in 18 healthy volunteers. They found that a gamma distribution was required

with a �rst-order one-
ompartment model

�

t

=

k

a

d

V (k

a

� k

e

)

�

e

�k

e

t

� e

�k

a

t

�

(5)

des
ribing the mean 
on
entration over time, where the absorption rate k

a

, the elimination rate

k

e

, and the volume V are parameters to be estimated, d is the dose administered, and t is time.

They also showed that it is important to model the left-
ensoring due to undete
tably small values

and to use an appropriate fun
tion for the 
hange in dispersion over time. For the latter, they use

Equation (5) raised to a power, an additional parameter, where all four parameters have di�erent
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Table 3: AICs for the FE models �tted to the 
osequinan data.

Log normal Gamma

Null 563.9 548.9

Absorption 545.2 543.4

Elimination 471.4 426.6

Volume 550.2 491.6

Table 4: AICs for the FE, RE, and doubly-
onstrained FE models for the elimination rate with a

gamma 
onditional distribution, �tted to the 
osequinan data.

Mixing distribution Normal Gamma

Fixed e�e
t 426.6

Random e�e
t 460.9 458.7

Doubly-
onstrained FE 425.7 425.7

values than in the regression fun
tion for the mean. However, the only dependen
ies that they


onsidered were those a

ounted for by FE models or by 
ovariates.

Here, I shall apply random e�e
ts and the doubly-
onstrained FE model to the three nonlinear

parameters individually, using an appropriate regression fun
tion for the dispersion parameter and

allowing for left 
ensoring. I shall 
ompare the results from the standard log normal distribution

with those from the gamma distribution. For simpli
ity, I shall only 
onsider the lowest dose level

of the parent drug, 
osequinan. For this subset of the data, there are 12 observations over time

for ea
h of the 18 subje
ts and 111 nondete
table values out of 216 observations. Two individuals

have extreme 
urves (numbers 12 and 18), both higher than the others.

Inspe
tion of the �ts of the FE models in Table 3 shows that di�eren
es in the elimination rate

explain the most variability among the individual 
urves. As for the 
omplete data set, the gamma

distribution �ts mu
h better than the log normal.

Let us now look at the RE and doubly-
onstrained FE models for the elimination rate, with

the gamma 
onditional distribution and using normal and gamma mixing distributions. As 
an be

seen in Table 4, the doubly-
onstrained FE models �t somewhat better than the FE model, and

mu
h better than the 
orresponding RE models. There is little di�eren
e among the two mixing

distributions. The di�eren
es in log elimination rate for ea
h subje
t are shown in Table 5 using

the three models. Here, there is virtually no shrinkage. Individuals 12 and 18 
learly stand out as

extreme, with lower elimination rates.

If the left-
ensored nondete
table values are set to one-half the dete
table level and the density

is used for them instead of the 
df, the FE and doubly-
onstrained FE models for the elimination

parameter 
onverge to the null model with an AIC of about 632, mu
h worse than those that allow

9



Table 5: Estimates of individual e�e
ts for the log elimination rate from models �tted to the


osequinan data with their standard errors for the gamma 
onditional distribution with normal

and gamma mixing distributions.

Fixed Doubly-
onstrained FE

Normal Gamma

1 0.30 0.29 0.12

2 0.05 0.05 �0:12

3 0.57 0.56 0.38

4 0.60 0.59 0.41

5 0.93 0.92 0.75

6 �0:04 �0:04 �0:22

7 0.38 0.37 0.19

8 0.48 0.47 0.30

9 0.26 0.25 0.08

10 0.61 0.60 0.42

11 �0:32 �0:31 �0:49

12 �1:64 �1:62 �1:80

13 �0:26 �0:26 �0:43

14 0.15 0.15 �0:03

15 �0:42 �0:41 �0:59

16 �0:09 �0:08 �0:26

17 0.24 0.24 0.06

18 �1:79 �1:77 �1:95

s.e. 0.10 0.07 0.06

10




orre
tly for 
ensoring. As with the models �tted to the 
omplete data set by Lindsey et al. (2000),

the 
ompartment model 
urve is greatly distorted.

4 Dis
ussion

Penalties on the likelihood have been used in two di�erent ways here. The h-likelihood involves a

penalty that pla
es a 
onstraint on the parameters in the statisti
al model, used in their point esti-

mation. This penalty is not used in the model sele
tion pro
ess on
e estimates with the 
onstraint

have been obtained. On the other hand, the AIC and other model sele
tion 
riteria involve a

penalty on the 
omplexity of the model. These do not a�e
t the point estimates of the parameters

of a given model, but provide an obje
tive pro
edure for 
omparing distin
t models.

If the `
orre
t' mixing distribution f

1

(�) were 
hosen, one might expe
t that the RE model

would �t better than the 
orresponding FE model, whether with one or two 
onstraints, be
ause

the latter has a large number of parameters estimated. This, however, will depend both on the

amount of information available within ea
h 
luster and on the penalty imposed. As is well known,

the BIC may indi
ate a simpler model than the AIC. For the 
ake data, the BIC gives a small

advantage to the RE model whereas, for the pharma
okineti
 data, it points strongly to the FE

and doubly-
onstrained FE models over the RE one.

A likelihood fun
tion plays several roles in the analysis of data.

1. It 
orresponds to some probabilisti
 representation of the observed data, 
ontaining unknown

parameters.

2. By its maximisation, it allows point estimates of these parameters to be 
al
ulated.

3. By study of its shape, the pre
ision of these estimates 
an be determined.

The h-likelihood of Lee and Nelder (1996) ful�ls none of these 
riteria, although their adjusted h-

likelihood does meet point 2. On the other hand, the interpretation of the h-likelihood as applying

one additional 
onstraint to the standard FE model to bring it 
loser to the RE model allows

Equation (2) to be interpreted as a standard likelihood. The estimation pro
edure proposed above

allows a wide 
lass of models to be �tted to 
lustered data involving 
ensoring and nonlinear

regression fun
tions.

All of the models used in the examples above 
an be routinely �tted using my libraries for R

available at www.lu
.a
.be/�jlindsey/r
ode.html. The random e�e
ts models are �tted by

Romberg integration, ex
ept for 
ertain with the normal mixing distribution for whi
h the faster

Gauss-Hermite integration may used.
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