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Summary. Overdispersion is 
ommonly treated as a nuisan
e fa
tor in the analysis of binomial-type

data. With the aid of an example, we 
onsider various ways in whi
h departures from the binomial

distribution 
an arise. We �t four di�erent generalizations of the binomial distribution, as well as a

�nite mixture model, to the data set and study why not all of these distributions provide reasonable �ts.

We 
on
lude that the reasons that 
ertain distributions may not be appropriate in
lude the presen
e

of underdispersion, an ex
ess of extreme events, and nonhomogeneity of the rea
tion of subje
ts to

some treatment.
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1 Introdu
tion

Overdispersion in binary data is widely thought to be a nuisan
e, something to be adequately allowed

for in making inferen
es about some linear model. Corre
tions range from simply modifying the

standard errors by means of a heterogeneity fa
tor to �tting a mixture distribution su
h as the beta-

binomial. Rarely does thought appear to be invested in 
onsidering why overdispersion arises, other

than stating that some important 
ovariates must be missing.

In 
ertain 
ases, the dispersion in the data 
an be modelled dire
tly. For example, dispersion may

itself vary systemati
ally with the available 
ovariates. Lindsey (1999) gives examples of experiments


on
erning �sh eggs hat
hing where overdispersion only o

urs in biologi
ally extreme 
onditions,

requiring response surfa
e models both for the probability of an event and for the 
orrelation among

events.
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Another possibility is that the form of the distribution di�ers signi�
antly from a binomial dis-

tribution. Various generalizations of this distribution are now available that allow for overdispersion,

and sometimes for underdispersion. Some of these will be dis
ussed in the next se
tion; they 
an yield

quite di�erent forms when �tted to various data sets.

From our investigations, we 
on
lude that a generally appli
able solution to over- or underdispersion

is not available. Simple 
orre
tions to standard errors are usually inadequate. The widely used beta-

binomial mixture does not always perform well. On the other hand, in the presen
e of overdispersion,

the normal-binomial mixture often does do well. If underdispersion is present, one may 
hoose between

the double binomial and the multipli
ative binomial distributions.

2 Models for overdispersion

The most 
ommonly used model for overdispersion in binomial data is the beta-binomial (Skellam,

1948):

f(y;�;  ) =

�

n

y

�

B(�e

 

+ y; (1� �)e

 

+ n� y)

B(�e

 

; (1� �)e

 

)

where typi
ally n is the total number of siblings of a family, y the number of these giving a positive

response, and B(�) is the beta fun
tion. Thus y may be written as say X

1

+ � � �+X

n

, where X

i

is the

response (either 0 or 1) of the ith sibling. This parametrization is 
onvenient for 
omparison with the

two to follow. The 
orrelation between X

i

and X

j

, for any distin
t i; j is � = 1=(exp( )+1). For �nite

 , � is stri
tly positive, indi
ating overdispersion relative to the binomial distribution. This distribution


an be derived from the binomial distribution by a mixture argument: the Bernoulli probability 
an

be thought to vary in the population a

ording to a beta distribution, and the marginal distribution

taken. Although the binomial distribution is a member of the exponential family, the beta-binomial is

not.

A 
losely related approa
h uses the normal distribution as the mixing distribution for the logit of

the Bernoulli probability, in a way analogous to the model introdu
ed by Hinde (1982) for overdispersed

Poisson data:

Z
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where f(y;�) is the binomial frequen
y fun
tion, with � as the 
orresponding probability, and with

log(�=(1� �)) = �, and �(�) the normal density with � the mean logit and  the standard deviation.

Here, however, numeri
al integration must be used in �tting the model. We shall use Gauss-Hermite

integration.

Two members of the exponential family have also been proposed to handle overdispersion. Unfortu-

nately, both have intra
table normalizing 
onstants and thus have not yet been widely used. However,

these 
onstants 
an now easily be 
al
ulated with fast 
omputers by summing over possible values of

the response variable.
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Altham (1978) introdu
ed two generalizations of the binomial distribution. That whi
h she 
alled

the `multipli
ative' generalization is a member of the exponential family. It 
an be written

f(y;�;  ) = 
(�;  )
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where 
(�;  ) is the intra
table normalizing 
onstant. The distribution will be overdispersed for  < 0,

with  = 0 yielding the usual binomial distribution. This parameter, as �2 , is the log 
onditional


ross-ratio for the responses of any pair of siblings given all of the others, for example the 
ross-

ratio derived from the 2 � 2 
ontingen
y table for P (X
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= x
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) for

x

1

; x

2

= 0; 1, in the notation introdu
ed above.

This distribution has y and y(n � y) as the joint suÆ
ient statisti
s for the probability and the

dispersion parameter. This yields a spe
ial 
hara
teristi
 of this distribution in that the dispersion

parameter disappears from the model, ex
ept in the normalization 
onstant, when y = 0 or y = n. It

also means that, when the distribution is fairly asymmetri
, it 
an have a small se
ondary mode in the

longer tail.

Efron (1986) proposed a family, whi
h he 
alled double exponential, that is also of exponential

family type. For overdispersed binomial data, the double binomial distribution in this family may be

appropriate:
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where 
(�;  ) is again an intra
table normalizing 
onstant. Again, the distribution will be overdispersed

for �1 <  < 0. In this model, 1=( + 1) has an approximate interpretation as the varian
e in
ation

fa
tor. Efron showed that for large n the normalizing 
onstant 
 is approximately 1. However, Aitkin

(1995) demonstrated that this approximation is inadequate for `moderate' n. For the rat litters dataset

used below the estimated parameter values (Table 3) with n = 10 give 
(0.9,�0:217)=0.875 and


(0.9,�0:951)=0.426, both 
learly rather di�erent from 1.

One important advantage of the double-binomial and the multipli
ative binomial models is that

they allow for underdispersion as well as overdispersion.

Lindsey and Altham (1998) �t these three models to frequen
y data on the proportions of the two

sexes among births of 
hildren in nineteenth 
entury Saxony. In 
ontrast to the dire
t pro
edure used

here, they �tted generalized models with a Poisson distribution and log link to frequen
y (histogram)

data (Lindsey and Mers
h, 1992). This method is restri
ted to studies where a large number of

o

urren
es of ea
h possible out
ome is observed. Hen
e, it 
annot be applied to ordinary 
ontingen
y

tables where overdispersion may be present.

3 Examples

Ex
ept for the `pure' binomial model, these models are non-nested. They will be 
ompared using

a dire
t likelihood approa
h whereby the negative log likelihood is penalized by adding to it the
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Table 1: Numbers of o�springs of pregnant rats surviving at four and 21 days, by litter. (Williams,

1975)

Control Treated

4 days 21 days 4 days 21 days

13 13 12 12

12 12 11 11

9 9 12 12

9 9 9 9

8 8 11 10

8 8 10 9

13 12 10 9

12 11 9 8

10 9 9 8

10 9 5 4

9 8 9 7

13 11 7 4

5 4 10 5

7 5 6 3

10 7 10 3

10 7 7 0

number of parameters estimated (a form of the Akaike (1973) information 
riterion: AIC). Smaller

values indi
ate relatively better models. (See Bai et al (1992) for a similar use of AIC's in modelling


ontingen
y tables.) These relative values of the AIC's are of 
ourse only indi
ative of the �ts of

the various models. Be
ause of sampling errors, we 
annot atta
h mu
h importan
e to the fa
t that

one AIC is, say, 58:7, whilst another is 57:6 although the latter model 
ould 
ontain one 
ompletely

redundant parameter and still have equivalent �t to the former one.

The devian
es quoted below are the standard two times the di�eren
e in negative log likelihood

with respe
t to the saturated model.

3.1 Rat litters

Consider an experiment in whi
h 16 female rats re
eived a 
ontrol diet during pregnan
y while 16

others re
eived a 
hemi
ally treated diet. The numbers (n) of o�spring alive in the litters at four days

were re
orded and they were followed to as
ertain how many (y) were still alive at 21 days (reprodu
ed

in Table 1). The data have previously been analyzed by Williams (1975) and O
hi and Prenti
e (1984).

The binomial model, allowing for a di�eren
e between food treatments, has an AIC of 68.2. The

devian
e is 87.2 with 30 degrees of freedom, indi
ating overdispersion. All four overdispersion distri-
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Table 2: AICs for various overdispersion models for the rat litter data with either the probability

and/or the dispersion parameter di�ering between treatment groups. (For the te
hni
al reason that

software is not available, the normal-binomial distribution with the same probability and di�erent

dispersion 
ould not be �tted.)

Both Di�erent Di�erent Both

Distribution same probability dispersion di�erent

Binomial 71.5 68.2 | |

Beta-binomial 58.7 58.7 58.7 56.9

Normal-binomial 57.8 57.4 | 56.5

Double binomial 57.6 57.1 55.3 56.3

Multipli
ative binomial 54.3 54.2 55.3 53.4

Table 3: Parameter estimates for the best model from ea
h distribution for the rat litter data. (The

standard error for the normal-binomial logit di�eren
e is not available be
ause the model was �tted

separately to the two treatment groups, not simultaneously as for the other distributions.)

Control Treated Logit di�eren
e

�̂

^

 �̂

^

 Estimate s.e.

Binomial 0.899 | 0.776 | �0:943 0.330

Beta-binomial 0.898 3.880 0.741 0.750 �1:126 0.463

Normal-binomial 0.906 0.484 0.844 1.757 �0:575 |

Double binomial 0.901 �0:217 0.901 �0:951 0.071 1.768

Multipli
ative binomial 0.815 �0:096 0.564 �0:270 �1:228 0.738

butions provide improved �ts, as shown in Table 2. The multipli
ative binomial, with di�erent values

for both the probability and the dispersion, gives the best �t. Noti
e how the double binomial does

not indi
ate a di�eren
e in probability of survival.

The parameter estimates for the best model from ea
h distribution are presented in Table 3.

Obviously, the estimates of the dispersion parameter are not 
omparable among the distributions.

The estimates for the probability (�) given by the binomial distribution, the observed proportions in

the raw data, are 0.899 and 0.776. Those for the beta-binomial are also 
lose to these. However, this

is not true of the better �tting models.

This 
an be 
lari�ed by examining a plot of the various models, given in Figure 1. In fa
t, the

three better �tting models are bimodal for the treated group, indi
ating a group with low survival

probability. A look at the data reveals that this is an a

urate re
e
tion of what is o

urring. Several

of the treated litters have low probability of survival. Thus, one single probability is not an adequate
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Figure 1: Fitted values for the �ve models applied to the rat data for a litter of size n = 10 in ea
h of

the two treatment groups. The verti
al s
ale has been exaggerated to show the se
ond mode. Binomial:

solid; beta-binomial: dashed; double binomial: dotted; multipli
ative binomial: dash-dotted; normal-

binomial: solid with dots. The heights of the bars represent the empiri
al proportions of survivors

with all litters standardized to size 10.
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measure of survival for the treated group. As well, not only does the probability of survival vary

between the two groups but the variability in survival is also di�erent.

The se
ond small mode for these skewed distributions 
ould, for example, o

ur if the treatment has

little e�e
t for most of that group but negative e�e
t for a minority. Thus, another useful approa
h

to analyzing these data might be to apply a two-
omponent �nite mixture model (Brooks et al.,

1997). When this is done with a mixture of two binomial distributions for the treatment group

(and one binomial distribution for the 
ontrol), the AIC is 65.3, �tting more poorly than any of the

overdispersion models 
onsidered. It would also be possible to �t a �nite mixture of any one of the

three overdispersion distributions 
onsidered above, but su
h a model would be diÆ
ult to interpret

biologi
ally.

3.2 Other examples

We have 
onsidered a number of other examples. We des
ribe brie
y two of them, omitting the


omputational details here. These were

1. Anderson's (1988) data on grasshopper 
hromosomes, for whi
h the normal-binomial provides

the best �t and

2. the data set given by Hand et al. (1994, p. 138) on sizes of Duro
-Jersey pig litters and the sex of

the young. These data exhibit 
lear under-dispersion relative to the binomial. We found that for

this data set the multipli
ative and double binomial distributions �t almost equally well. Both

are mu
h better than the binomial, whi
h in turn is better than either of the beta-binomial or

normal-binomial.

4 Dis
ussion

Departures from a binomial distribution 
an o

ur in a variety of ways. In 
he
king for su
h departures,

the following points should be 
onsidered:

� Over- or underdispersion may be the result of a single error in the table, arising, for example,

either when 
ondu
ting a study or in re
ording the results.

� An ex
ess number of events may o

ur for the two extreme possibilities (y = 0 and/or y = n)

as 
ompared to the binomial distribution. This 
an be modelled by using a �nite mixture with

extra probability masses at these two extremes. Lindsey and Altham (1998) used su
h a model

for the sex ratio, but it did not a

ount for all of the overdispersion. Su
h an approa
h might

also be appropriate for the rat data where many litters had all young alive after 21 days, as 
an

be seen in Table 1.

� Treatment, or some 
ovariate, may not have a uniform e�e
t on all subje
ts. This may 
ause a

se
ond small mode to appear for 
ertain distributions as with the rat data; this 
an be seen in
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Figure 3 for the treated group. In su
h a situation, a s
ienti�
ally more useful pro
edure might

be to �t a �nite mixture of two binomial distributions (Brooks et al., 1997); this did not turn

out to produ
e a good model for the rat data.

� Although all of the models used for departures from the binomial distribution 
an handle overdis-

persion, of those 
onsidered here, only the multipli
ative and double binomial 
an adequately

allow for underdispersion. The latter may arise in the 
ontext of repulsion as with plants grow-

ing in a plot, or other forms of negative dependen
e, as when subje
ts are 
ompeting for a �nite

supply of resour
es. An example of the latter might o

ur in the survival of the strongest in a

litter, although this does not appear to be relevant for the examples used above.

It is parti
ularly interesting that the normal-binomial mixture 
an apparently be bimodal be
ause

Holgate (1970) demonstrated that the normal-Poisson mixture is unimodal. (We used 14-point Gauss{

Hermite integration whi
h should provide a good numeri
al approximation.)

Interpretation of the biologi
al reasons for over- or underdispersion is always diÆ
ult for se
ondary

analysis of data. It 
an only properly be done through 
lose intera
tion with the s
ientists involved in

the study.

Diagnosti
s are reasonably well known for generalized linear models, as well as for some of their

extensions su
h as the beta-binomial and negative binomial distributions (Pregibon, 1981; Williams,

1987). However, their appli
ation is not as 
lear for other dispersion models less 
losely related to

generalized linear models. We are 
urrently investigating this problem.
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