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Summary. Overdispersion is commonly treated as a nuisance factor in the analysis of binomial-type
data. With the aid of an example, we consider various ways in which departures from the binomial
distribution can arise. We fit four different generalizations of the binomial distribution, as well as a
finite mixture model, to the data set and study why not all of these distributions provide reasonable fits.
We conclude that the reasons that certain distributions may not be appropriate include the presence
of underdispersion, an excess of extreme events, and nonhomogeneity of the reaction of subjects to
some treatment.
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1 Introduction

Overdispersion in binary data is widely thought to be a nuisance, something to be adequately allowed
for in making inferences about some linear model. Corrections range from simply modifying the
standard errors by means of a heterogeneity factor to fitting a mixture distribution such as the beta-
binomial. Rarely does thought appear to be invested in considering why overdispersion arises, other
than stating that some important covariates must be missing.

In certain cases, the dispersion in the data can be modelled directly. For example, dispersion may
itself vary systematically with the available covariates. Lindsey (1999) gives examples of experiments
concerning fish eggs hatching where overdispersion only occurs in biologically extreme conditions,
requiring response surface models both for the probability of an event and for the correlation among

events.



Another possibility is that the form of the distribution differs significantly from a binomial dis-
tribution. Various generalizations of this distribution are now available that allow for overdispersion,
and sometimes for underdispersion. Some of these will be discussed in the next section; they can yield
quite different forms when fitted to various data sets.

From our investigations, we conclude that a generally applicable solution to over- or underdispersion
is not available. Simple corrections to standard errors are usually inadequate. The widely used beta-
binomial mixture does not always perform well. On the other hand, in the presence of overdispersion,
the normal-binomial mixture often does do well. If underdispersion is present, one may choose between

the double binomial and the multiplicative binomial distributions.

2 Models for overdispersion

The most commonly used model for overdispersion in binomial data is the beta-binomial (Skellam,

1948):
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where typically n is the total number of siblings of a family, y the number of these giving a positive
response, and B(-) is the beta function. Thus y may be written as say X; + - - - + X,,, where Xj is the
response (either 0 or 1) of the ith sibling. This parametrization is convenient for comparison with the
two to follow. The correlation between X; and X}, for any distinct 4, j is p = 1/(exp(¢0) +1). For finite
1, p is strictly positive, indicating overdispersion relative to the binomial distribution. This distribution
can be derived from the binomial distribution by a mixture argument: the Bernoulli probability can
be thought to vary in the population according to a beta distribution, and the marginal distribution
taken. Although the binomial distribution is a member of the exponential family, the beta-binomial is
not.
A closely related approach uses the normal distribution as the mixing distribution for the logit of
the Bernoulli probability, in a way analogous to the model introduced by Hinde (1982) for overdispersed

Poisson data:
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where f(y;) is the binomial frequency function, with 7 as the corresponding probability, and with
log(w/(1 —m)) = A, and ¢(-) the normal density with p the mean logit and ¢ the standard deviation.
Here, however, numerical integration must be used in fitting the model. We shall use Gauss-Hermite
integration.

Two members of the exponential family have also been proposed to handle overdispersion. Unfortu-
nately, both have intractable normalizing constants and thus have not yet been widely used. However,
these constants can now easily be calculated with fast computers by summing over possible values of

the response variable.



Altham (1978) introduced two generalizations of the binomial distribution. That which she called

the ‘multiplicative’ generalization is a member of the exponential family. It can be written
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where ¢(m, 1) is the intractable normalizing constant. The distribution will be overdispersed for ¢ < 0,
with ¢ = 0 yielding the usual binomial distribution. This parameter, as —2¢, is the log conditional
cross-ratio for the responses of any pair of siblings given all of the others, for example the cross-
ratio derived from the 2 x 2 contingency table for P(X; = 1, X2 = x2|X3 = 3,..., X, = x,) for
z1,T2 = 0,1, in the notation introduced above.

This distribution has y and y(n — y) as the joint sufficient statistics for the probability and the
dispersion parameter. This yields a special characteristic of this distribution in that the dispersion
parameter disappears from the model, except in the normalization constant, when y = 0 or y = n. It
also means that, when the distribution is fairly asymmetric, it can have a small secondary mode in the
longer tail.

Efron (1986) proposed a family, which he called double exponential, that is also of exponential
family type. For overdispersed binomial data, the double binomial distribution in this family may be

appropriate:
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where ¢(7, 1) is again an intractable normalizing constant. Again, the distribution will be overdispersed
for —1 <4 < 0. In this model, 1/(x) + 1) has an approximate interpretation as the variance inflation
factor. Efron showed that for large n the normalizing constant ¢ is approximately 1. However, Aitkin
(1995) demonstrated that this approximation is inadequate for ‘moderate’ n. For the rat litters dataset
used below the estimated parameter values (Table 3) with n = 10 give ¢(0.9,—0.217)=0.875 and
¢(0.9,—0.951)=0.426, both clearly rather different from 1.

One important advantage of the double-binomial and the multiplicative binomial models is that
they allow for underdispersion as well as overdispersion.

Lindsey and Altham (1998) fit these three models to frequency data on the proportions of the two
sexes among births of children in nineteenth century Saxony. In contrast to the direct procedure used
here, they fitted generalized models with a Poisson distribution and log link to frequency (histogram)
data (Lindsey and Mersch, 1992). This method is restricted to studies where a large number of
occurrences of each possible outcome is observed. Hence, it cannot be applied to ordinary contingency

tables where overdispersion may be present.

3 Examples

Except for the ‘pure’ binomial model, these models are non-nested. They will be compared using

a direct likelihood approach whereby the negative log likelihood is penalized by adding to it the



Table 1: Numbers of offsprings of pregnant rats surviving at four and 21 days, by litter. (Williams,
1975)

Control Treated
4 days 21 days 4 days 21 days
13 13 12 12
12 12 11 11
9 9 12 12
9 9 9 9
8 8 11 10
8 8 10 9
13 12 10 9
12 11 9 8
10 9 9 8
10 9 5 4
9 8 9 7
13 11 7 4
5 4 10 5
7 5 6 3
10 7 10 3
10 7 7 0

number of parameters estimated (a form of the Akaike (1973) information criterion: AIC). Smaller
values indicate relatively better models. (See Bai et al (1992) for a similar use of AIC’s in modelling
contingency tables.) These relative values of the AIC’s are of course only indicative of the fits of
the various models. Because of sampling errors, we cannot attach much importance to the fact that
one AIC is, say, 58.7, whilst another is 57.6 although the latter model could contain one completely
redundant parameter and still have equivalent fit to the former one.

The deviances quoted below are the standard two times the difference in negative log likelihood

with respect to the saturated model.

3.1 Rat litters

Consider an experiment in which 16 female rats received a control diet during pregnancy while 16
others received a chemically treated diet. The numbers (n) of offspring alive in the litters at four days
were recorded and they were followed to ascertain how many (y) were still alive at 21 days (reproduced
in Table 1). The data have previously been analyzed by Williams (1975) and Ochi and Prentice (1984).

The binomial model, allowing for a difference between food treatments, has an AIC of 68.2. The

deviance is 87.2 with 30 degrees of freedom, indicating overdispersion. All four overdispersion distri-



Table 2: AICs for various overdispersion models for the rat litter data with either the probability
and/or the dispersion parameter differing between treatment groups. (For the technical reason that
software is not available, the normal-binomial distribution with the same probability and different

dispersion could not be fitted.)

Both Different Different Both

Distribution same probability dispersion different
Binomial 71.5 68.2 — —
Beta-binomial 58.7 58.7 58.7 56.9
Normal-binomial 57.8 57.4 — 56.5
Double binomial 57.6 57.1 55.3 56.3
Multiplicative binomial  54.3 54.2 55.3 53.4

Table 3: Parameter estimates for the best model from each distribution for the rat litter data. (The
standard error for the normal-binomial logit difference is not available because the model was fitted

separately to the two treatment groups, not simultaneously as for the other distributions.)

Control Treated Logit difference
T 1[1 T 1[1 Estimate  s.e.
Binomial 0.899 — 0.776 — —-0.943  0.330
Beta-binomial 0.898 3.880 0.741 0.750 —1.126  0.463
Normal-binomial 0.906 0.484 0.844 1.757  —0.575 —
Double binomial 0.901 —-0.217 0.901 —-0.951 0.071  1.768

Multiplicative binomial 0.815 —0.096 0.564 —0.270 —1.228 0.738

butions provide improved fits, as shown in Table 2. The multiplicative binomial, with different values
for both the probability and the dispersion, gives the best fit. Notice how the double binomial does
not indicate a difference in probability of survival.

The parameter estimates for the best model from each distribution are presented in Table 3.
Obviously, the estimates of the dispersion parameter are not comparable among the distributions.
The estimates for the probability (7) given by the binomial distribution, the observed proportions in
the raw data, are 0.899 and 0.776. Those for the beta-binomial are also close to these. However, this
is not true of the better fitting models.

This can be clarified by examining a plot of the various models, given in Figure 1. In fact, the
three better fitting models are bimodal for the treated group, indicating a group with low survival
probability. A look at the data reveals that this is an accurate reflection of what is occurring. Several

of the treated litters have low probability of survival. Thus, one single probability is not an adequate
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Figure 1: Fitted values for the five models applied to the rat data for a litter of size n = 10 in each of
the two treatment groups. The vertical scale has been exaggerated to show the second mode. Binomial:
solid; beta-binomial: dashed; double binomial: dotted; multiplicative binomial: dash-dotted; normal-
binomial: solid with dots. The heights of the bars represent the empirical proportions of survivors

with all litters standardized to size 10.



measure of survival for the treated group. As well, not only does the probability of survival vary
between the two groups but the variability in survival is also different.

The second small mode for these skewed distributions could, for example, occur if the treatment has
little effect for most of that group but negative effect for a minority. Thus, another useful approach
to analyzing these data might be to apply a two-component finite mixture model (Brooks et al.,
1997). When this is done with a mixture of two binomial distributions for the treatment group
(and one binomial distribution for the control), the AIC is 65.3, fitting more poorly than any of the
overdispersion models considered. It would also be possible to fit a finite mixture of any one of the
three overdispersion distributions considered above, but such a model would be difficult to interpret

biologically.

3.2 Other examples

We have considered a number of other examples. We describe briefly two of them, omitting the

computational details here. These were

1. Anderson’s (1988) data on grasshopper chromosomes, for which the normal-binomial provides

the best fit and

2. the data set given by Hand et al. (1994, p. 138) on sizes of Duroc-Jersey pig litters and the sex of
the young. These data exhibit clear under-dispersion relative to the binomial. We found that for
this data set the multiplicative and double binomial distributions fit almost equally well. Both
are much better than the binomial, which in turn is better than either of the beta-binomial or

normal-binomial.

4 Discussion

Departures from a binomial distribution can occur in a variety of ways. In checking for such departures,

the following points should be considered:

e Over- or underdispersion may be the result of a single error in the table, arising, for example,

either when conducting a study or in recording the results.

e An excess number of events may occur for the two extreme possibilities (y = 0 and/or y = n)
as compared to the binomial distribution. This can be modelled by using a finite mixture with
extra probability masses at these two extremes. Lindsey and Altham (1998) used such a model
for the sex ratio, but it did not account for all of the overdispersion. Such an approach might
also be appropriate for the rat data where many litters had all young alive after 21 days, as can

be seen in Table 1.

e Treatment, or some covariate, may not have a uniform effect on all subjects. This may cause a

second small mode to appear for certain distributions as with the rat data; this can be seen in



Figure 3 for the treated group. In such a situation, a scientifically more useful procedure might
be to fit a finite mixture of two binomial distributions (Brooks et al., 1997); this did not turn

out to produce a good model for the rat data.

e Although all of the models used for departures from the binomial distribution can handle overdis-
persion, of those considered here, only the multiplicative and double binomial can adequately
allow for underdispersion. The latter may arise in the context of repulsion as with plants grow-
ing in a plot, or other forms of negative dependence, as when subjects are competing for a finite
supply of resources. An example of the latter might occur in the survival of the strongest in a

litter, although this does not appear to be relevant for the examples used above.

It is particularly interesting that the normal-binomial mixture can apparently be bimodal because
Holgate (1970) demonstrated that the normal-Poisson mixture is unimodal. (We used 14-point Gauss—
Hermite integration which should provide a good numerical approximation.)

Interpretation of the biological reasons for over- or underdispersion is always difficult for secondary
analysis of data. It can only properly be done through close interaction with the scientists involved in
the study.

Diagnostics are reasonably well known for generalized linear models, as well as for some of their
extensions such as the beta-binomial and negative binomial distributions (Pregibon, 1981; Williams,
1987). However, their application is not as clear for other dispersion models less closely related to

generalized linear models. We are currently investigating this problem.
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