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Abstract

The demand for models of repeated measurements has known a phe-
nomenal growth in recent years, as applications are found in all areas of
scientific endeavour. In this review, similarities in the approaches to mod-
elling different kinds of response variables, normal, discrete, and duration,
are emphasized. Any appropriate model should take into account two pos-
sible types of stochastic dependence, random variability or heterogeneity
among units in the population and, in longitudinal studies, stochastic
time dependence among responses. Finally, a number of problem areas
for further research are outlined.
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1 Introduction

Repeated measurements, as the name suggests, are observations of the same
characteristic which are made several times (but not necessarily separated in
time!). What distinguishes such observations from those in more traditional
statistical data modelling is that

e the same variable is measured on the same observational unit more than
once: the responses are not independent as in the usual regression analysis
and

e more than one observational unit is involved: the responses do not form
a simple time series.

Thus, one special characteristic of repeated measurements is that more than
one observation on the same response variable is available on each observational
unit. For a set of responses on each of several units, those on the same one
may often, but not always, be expected to be more closely related than those



among different ones. Thus, we are in a situation of stochastically dependent
data which must be modelled by some form of multivariate methods. This may
be distinguished from more general multivariate methods which treat interde-
pendence among different types of response variables.

Repeated measurement of the same variable on the same unit may be nec-
essary for a number of reasons.

e Repeated observation may be the only way of obtaining the required mea-
surement, as in counting the occurrences of some phenomenon.

e Interest may centre on the evolution of some response, given initial con-
ditions which may or may not be fixed experimentally. Simple growth
curves are the most common example.

e The investigator may wish to compare the effects of continued adminis-
tration of some treatment over time.

e Different treatments may need to be compared in a situation where vari-
ability among units is an important uncontrollable factor. To increase
precision, intra-unit comparisons of the different treatments are necessary.

e One may want to study the total effects of different sequences of treat-
ments, as in the study of crop rotations in agriculture.

In recent years, the literature on repeated measures has reached explosive pro-
portions. Lindsey (1993) provides a bibliography over over 1300 items to the
end of 1992, and this is far from complete. Here, only a few of the more im-
portant highlights can be touched upon. Emphasis will be placed on the use of
similar models for different types of response variables.

2 Types of responses

In the statistical literature, the most common models for repeated responses as-
sume them to be continuous measurements taking any real value. Such models
are most commonly based on some variation of the multivariate normal distri-
bution. Much of the original work on repeated measurements evolved around
this type of response, as developments and special cases of the Potthoff and Roy
(1964) growth model,

E[Y] = XBZ

where Y and X are the response and design matrices, while B is a C' x P location
parameter matrix and Z is a P x R matrix of covariates changing with the
responses on a unit, most often simply a polynomial over the R points in time. In
this general multivariate model, the variance-covariance matrix, X, is assumed
to have an unstructured form. Most subsequent developments have concentrated



on more complete specifications of this matrix (Diggle, 1988; Elston and Grizzle,
1962; Jones and Ackerson, 1990; Laird and Ware, 1982), although some work
has been done on nonlinear models for the location parameters (Berkey, 1982;
Frey, 1992; Gennings, Chinchilli, and Carter, 1989; Palmer, Phillips, and Smith,
1991; Vonesh and Carter, 1992), and occasionally both simultaneously (Heitjan,
1991a, b).

However, categorical and count data play very important roles in scientific
observation. For example, they are the principal type of response in panel
studies. Counts are always repeated event data, where nothing distinguishes the
events on a unit, so that they are aggregated as the count. On the other hand,
categorical data are only repeated observations of events if they occur to the
same unit, but are not aggregated because treatments or covariates distinguish
among them. However, such events may be aggregated as frequencies across
units having exactly the same profiles of explanatory variables. The difference,
from our perspective, is that, for a count, the response of interest is the frequency
of occurrence of one or more events, necessarily on the same unit, while, for
categorical data, the response is an indicator of which of a number of events has
occurred. Categorical data are only repeated measurements if observed several
times on the same unit.

All of the well-known work on overdispersion (Anderson, 1988; Ashby et
al., 1992; Breslow, 1984; Cox, 1983; Crowder, 1978; Gouriéroux, Montfort,
and Trognon, 1984; Hausman, Hall, and Griliches, 1984; Heckman and Willis,
1977; Lawless, 1987; Mosimann, 1962; Prentice, 1986; Williams, 1982) and
Markov chains (Anderson and Goodman, 1957; Billingsley, 1961; Chatfield,
1973; Cox, 1955, 1958; Lawless, and McLeish, 1984; Muenz, and Rubinstein,
1985; Spilerman, 1972; Zeger, Liang, and Self, 1985) is relevant here.

Another important area of scientific study involves the observation of dura-
tions, and, more generally, of positive-valued responses. These usually will have
skewed marginals for which a normal distribution is not suitable. The classical
solution of data transformations is unsatisfactory, because it provides no infor-
mation about the underlying data generating mechanism. The special case of
durations is even more complex.

If we measure survival in living beings, there can be no repetition, because
death occurs at the end. On the other hand, consider the classical measurement
of periods between successive breakdowns of a machine or the succession of
periods of unemployment or of illness of individuals. This is often known as
an event or life history study; many of the most important developments have
come in the social sciences (Blossfeld, Hamerle, and Mayer, 1989; Hannan,
and Carroll, 1981; Heckman, 1978; Heckman and Borjas, 1980; Heckman and
Singer, 1985; Lancaster, 1990: Tuma, 1976; Tuma, Hannan, and Groeneveld,
1976), more recently penetrating into the more biological fields (Aalen et al.,
1980; Andersen and Borgan, 1985; Clayton, 1988).

A close relationship exists between durations and counts in longitudinal
event history data. This is clear in the counting process approach to dura-



tion data, where the number of events is accumulated over a period of time,
thus uniting a duration and a count.

Event history data are peculiar in that the response, whether taken as
elapsed duration between events or cumulated counts of events, is a direct func-
tion of time. This contrasts with many other longitudinally observed repeated
responses, which are simply attributes of the unit, such as blood pressure, mea-
sured at various points in time. They will have an evolution, but not necessar-
ily accumulation. Intermediate are the ‘growth’ type responses, which have a
predominant tendency, either to become larger or smaller, usually up to some
asymptotic limit, but where successive differences are not necessarily in the
same direction: a growing rat may lose weight over one observation period, but
events cannot disappear after they have occurred.

3 Heterogeneity

The units which are observed for repeated measures will usually be inherently
heterogeneous. Some will systematically respond more strongly than others. In
medical studies, such as survival analysis, this is known as frailty. In studies
of counts of accidents, it is called proneness. In both cases, the rate at which
events is occurring is varying in some unknown way across the observation units.
Explanatory variables, which might explain these differences, are not available,
and may not be of interest in the study at hand. In other words, the variability
of responses on a unit will often be smaller than that across units. If responses
on a unit were independent, the covariability among them would be zero. In
contrast, here, we shall require a uniform intra-class or intra-unit covariability
model. All inter-relationships among responses within a unit are equal, but
nonzero. In this way, we can model directly the stochastic dependence structure
of our observations.

For count data, we find the overdispersion models mentioned above. For
normally distributed data, we have variance components models. The variance-
covariance matrix in the Potthoff and Roy model is constrained to have a con-
stant off-diagonal covariance. Unfortunately, generalization to other models
based on other types of responses is rarely easy. Generally, non-normal dis-
tributions require the specification of all higher order moments and these are
often closely related to the mean or location parameter. Suitable multivariate
distributions are not often available.

A second fruitful approach is to assume that some parameter describing the
different reactions of the units is varying in a random way throughout the pop-
ulation. This is known as a random effects model. Suppose that the distribution
of responses, given the parameter value, is f(y|\) and that the random distri-
bution of the parameter is given by p(};v). Then, the marginal distribution of



the response can be obtained by integration:

fly;v) = /f(ylk)p(k;v)dk

It turns out that, if both distributions are normal, the result is identical to the
variance components model mentioned above.

One special case of particular interest is when p(A; ) is the conjugate distri-
bution to f(y|\), because then f(y;7) can be obtained in closed form. For the
exponential family,

T
flyln) = Xt

a conjugate distribution, also a member of the exponential family, always exists:

p(Xin0,7) = e TR
as it does for generalized linear models. The normal random effects model is one
such case, but other well-known examples include the negative binomial distri-
bution for counts and the beta-binomial distribution for overdispersed binomial
data. If a conjugate distribution is not available or not suitable, numerical
integration must usually be performed.

If the covariates are introduced into the conditional distribution, f(y|\),

g(\i) =D Binwin
I

where g(-) is a link function, we have a ‘subject-specific’ model. In this case,
Bio is usually taken as random. Here, the x;; can distinguish among responses
on a unit, as well as among units.

If the covariates are introduced after integration, into the marginal distribu-

tion, f(y;7),

9(vi) =Y Bikwik

k

we have a ‘population-averaged’ model. Obviously, in this latter case, covari-
ates which distinguish among responses on a unit cannot be used; the z;; must
remain constant for all responses on a unit. This model provides an averaged
measure of differences (in treatments, etc.) over responses among units. How-
ever, for normal models, the two are identical.

Various heterogeneity models have been suggested for categorical data (Ashby
et al., 1992; Koch et al., 1977; Laird, 1991; Preisler, 1988) as well as for du-
ration data (Clayton, 1978; Clayton and Cuzick, 1985; Heckman and Singer,
1984a, b; Hougaard, 1984, 1986a, b; Lancaster, 1990; Oakes, 1982, 1986, 1989).
Particular care must be taken in the latter case. Usually, only a ‘window’ is



available on the event history. If the population is heterogeneous, events of the
more frail or prone units will be over-represented (Blossfeld and Hamerle, 1992;
Vaupel and Yashin, 1985).

An extension of the random effects model, in a regression situation, is to
make a number of the regression coefficients random, a random coefficients
model. This has been extensively studied in the normal case (Elston and Grizzle,
1962; Laird and Ware, 1982),

E[Y|A]=XBZ+AV  A~MVN(0,I®A)

where Z and V are polynomials in time, so that the model can be used to in-
duce complex structures in the variance-covariance matrix. However, the actual
meaning of such coefficients is usually difficult to interpret. They are also dif-
ficult to extend to the nonlinear and nonnormal cases, so that they should be
avoided unless there is solid scientific reasons for using them.

Because of the difficulties in directly constructing models of covariability
among responses for non-normal data, certain non-model based procedures,
called generalized estimating equations, have been put forward (Gilmour, An-
derson, and Rae, 1985; Liang and Zeger, 1986). These are based on the esti-
mating equations for univariate generalized linear models, into which a variance-
covariance is artificially inserted,

al Opir, i 1
> Zidiag { ] [UZR,U?] 'd; =0
P ik

where Z; is the P x R design matrix for the unit, d; =y; — pu; a R x 1 vector,
and n the linear regression structure, with R some correlation matrix and U; =
diag(var[Yis]). The result is that the relation of the estimating equations to
a likelihood function, and to a probability-based model, is usually destroyed.
Besides the difficulty in interpreting the results of such an approach, it has the
additional handicap that inferences can only be performed using the notoriously
poorly performing asymptotic standard errors of the parameter estimates (Wald
tests).

Heterogeneity is a general problem in repeated measurements data. If the
responses on a unit are recorded more or less simultaneously, as, for example,
in family and litter studies, agricultural split plots, or similar organs in the
same body, this will be the only type of stochastic dependence which must be
modelled.

4 Longitudinal data

Many repeated measurement studies involved collection of data on units over
time. Even survival studies necessitate continuous observation over time, al-
though only one final event is being recorded. When time is involved, a second



kind of stochastic dependence among observations on a unit will usually be
present: observations closer together in time will often be more closely related.
Because the series on any given unit will usually be fairly short, a first order
Markov model will usually be adequate. Note, however, that, in such short
periods, the series will often be nonstationary.

For normally distributed data, autoregression models will usually be suitable.
As for heterogeneity, a identical models can be obtained by directly modelling
the variance-covariance matrix or by conditioning on lagged variables. Some
fairly complex models have been developed in this domain, combining random
effects with autoregression (Diggle, 1988; Heitjan, 1991a, b; Jones and Ackerson,
1990).

Again, for non-normal data, it is usually difficult to model the stochastic
dependence directly, so that conditioning must be used

9(pi) = pyik—1 + Y _ Birtin
D

For categorical data, Markov chains are easily handled as logistic or log linear
models (Lindsey, 1992). Counts can also be handled by conditioning in log lin-
ear models. However, counts of events accumulated over time may be subject
to contagion, a time dependence among events. As is well known, if only aggre-
gated counts are available, this cannot be distinguished from the proneness of
heterogeneous units. The two models can only be compared if the time spacing
of the events is available. And, of course, both proneness and contagion may
simultaneously be present.

The situation for event history data is more complex. In the simplest case,
intervals are independent and identically distributed, so that we have a renewal
process and all of the standard models of survival analysis can be applied. When
there is time dependence, conditioning can be introduced to create nonhomoge-
neous processes. One simple and very useful model is the birth process, where
conditioning is on the number of previous events, but one might also condition
on the length of the previous period(s). Within a period, conditioning on time
since the previous event is the same as replacing a Poisson process by a non-
homogeneous one, such as a Weibull, gamma, or extreme value process. If an
event signals a change of state for the unit, we have a semi-Markov or Markov
renewal process.

The situation becomes more difficult when there are time-varying covariates
which can change within the interval. Then, the distributions of the intervals
can no longer be directly modelled. Instead, we have to look at the intensity of
the event process, making it depend on the covariates, as well as any appropriate
information about previous events. This is the counting process approach, which
can be modelled as a log linear model for the presence or absence of an event
in each small observation period.

Because the correlation matrix, R, can have any arbitrary form, generalized



estimating equations can also be used for longitudinal data, although the same
reservations about their interpretation still hold.

It cannot be emphasized too much that, for all types of responses, both
heterogeneity and time stochastic dependence should be considered. Both may
not prove necessary in any single case, but their presence should not be excluded
a priori. They provide valuable information, in addition to covariate effects,
which the scientist always finds very useful. As well, neglecting one can induce
spurious dependence of the other type. Even if the stochastic dependence is
not of direct interest, ignoring it and assuming independence among repeated
observations on a unit will make the effects of interest more significant than
they really are. Such an independence model operates as if there were more
information in the data than actually exists.

5 Prospects

Although a few suitable multivariate distributions are slowly being developed
(Arnold and Strauss, 1991; Genest and MacKay, 1986a, b; Jeorgensen, 1992;
Marshall and Olkin, 1988), the area is lagging far behind the complex require-
ments of modelling repeated measures data. At present, conditioning, whether
on random parameters or lagged responses, is the only realistic way to set up
most reasonable non-normal models.

It is surprising how many problems of repeated measurements can be coerced
into the generalized linear model context, or, even more generally, as exponential
dispersion models (Jorgensen, 1987, 1992)

F(y:0,0°) = a(o?,y)el¥ 0-xO)/s

The latter provide the generalization of the independent and identically dis-
tributed increments models of Brownian motion and Poisson processes to more
general processes, such as the Bernoulli, inverse Gaussian, and gamma (Jgrgensen,
1992; Seshadri, 1988). They are one promising avenue for developing the mul-
tivariate models necessary for repeated measures, especially for nonstationary
longitudinal data. Another avenue which should be investigated is the set of
conditions under which the scalar dispersion parameter, o2, in these models,
can be generalized to a vector or matrix. The bivariate exponential conditionals
models of Arnold and Strauss (1991) are examples.

Linear location models, including polynomials, are, at best, simple approx-
imations to reality, where evolution towards an asymptote is the usual situa-
tion. As mentioned, a rapidly increasing amount of work on nonlinear models,
with random effects and autoregression, is being produced for normal responses.
However, little is yet available for non-normal data. Models handle heterogene-
ity or time dependence, and rarely nonlinear regression. Much work needs to
be done here.



In any data recording done over time, censoring, such as dropouts or with-
drawals, and other types of missing observations, are a major problem. Fairly
strong assumptions usually have to be made about the randomness of the ‘miss-
ing mechanism’. Certain results, particularly using martingale stopping times,
are now available from survival analysis, but these need to be further extended
for repetitions. The problem of heterogeneity in event history data was noted
above. But even in simpler cases, such as growth curves, the implications of
some units having time to reach an asymptote and others not, has not been
studied.

As well, observation may often not be possible at regular intervals on each
unit. Then, continuous time models are required. These are available for nor-
mally distributed data (Heitjan, 1991a, b; Jones and Ackerson, 1990; Jones and
Boadi-Boateng, 1991), but little work has yet been done in other contexts. For
example, few models are available for unequally space categorical or count data.

When continuously changing covariates, or responses, are involved, strong
assumptions have to be made about their values between observation points.
The effects of such assumptions need to be investigated.

Virtually no statistical computer packages are available for such multivari-
ate responses. What is required is the next generation of software to follow the
GLIM modelling strategy. Stochastic dependence structures, for heterogene-
ity and time dependence, must be easily selectable for a variety of non-normal
models, in combination with a simple syntax which extends the Wilkinson and
Rogers (1973) notation to nonlinear location models. Extensions of the Kalman
filter, which have already proven their worth in normal models (Jones and Ack-
erson, 1990), seem to be the most promising algorithm for estimation (West,
Harrison, and Migon, 1985).

With the ready availability of rapidly increasing computing power, one ob-
stacle to fitting such complex models has been removed. However, further study
is needed for the choice of stable initial values in iterative routines, and of ways
of monitoring convergence before such software will be acceptable for everyday
statistical use.

At present, repeated measurements is an area where scientists are generating
vast quantities of data while the statisticians are incapable of providing them
with the suitable models which can be routinely applied.

References

[1] Aalen, O0.0., Borgan, @, Keiding, N., and Thormann, J. (1980) Interaction
between life history events: nonparametric analysis for prospective and
retrospective data in the presence of censoring. Scandinavian Journal of
Statistics 7, 161-171.



2]

3]

Andersen, P.K. (1992) Repeated assessment of risk factors in survival anal-
ysis. Statistical Methods in Medical Research 1, 297-315.

Andersen, P.K. and Borgan, 0. (1985) Counting process models for life
history data: a review. Scandinavian Journal of Statistics 12, 97-158.

Anderson, D.A. (1988) Some models for overdispersed binomial data. Aus-
tralian Journal of Statistics 30, 125-148.

Anderson, T.W. and Goodman, L.A. (1957) Statistical inference about
Markov chains. Annals of Mathematical Statistics 28, 89-109.

Arnold, B.C. & Strauss, D.J. (1991) “Bivariate distributions with condi-
tionals in prescribed exponential families.” Journal of the Royal Statistical
Society B53: 365-375.

Ashby, M., Neuhaus, J.M., Hauck, W.W., Bacchetti, P., Heilbron, D.C.,
Jewell, N.P.; Segal, M.R., and Fusaro, R.E. (1992) An annotated bibliog-
raphy of methods for analyzing correlated categorical data. Statistics in
Medicine 11, 67-99.

Berkey, C.S. (1982) Bayesian approach for a nonlinear growth model. Bio-
metrics 38, 953-961.

Billingsley, P. (1961) Statistical methods in Markov chains. Annals of Math-
ematical Statistics 32, 12-40.

Blossfeld, H.P. and Hamerle, A. (1992) Unobserved heterogeneity in event
history models. Quality and Quantity 26, 157-168.

Blossfeld, H.P., Hamerle, A., and Mayer, K.U. (1989) Event History Anal-
ysis. Hillsdale: Lawrence Erlbaum Associates.

Breslow, N.E. (1984) Extra-Poisson variation in log-linear models. Journal
of the Royal Statistical Society C33, 38—44.

Chatfield, C. (1973) Statistical inference regarding Markov chain models.
Journal of the Royal Statistical Society C22, 7-20.

Clayton, D.G. (1978) A model for association in bivariate life-tables and
its application in epidemiological studies of familial tendency in chronic
disease incidence. Biometrika 65, 141-151.

Clayton, D.G. (1988) The analysis of event history data: a review of
progress and outstanding problems. Statistics in Medicine 7, 819-841.

Clayton, D.G. and Cuzick, J. (1985) Multivariate generalizations of the
proportional hazards model. Journal of the Royal Statistical Society A148,
82-117.

10



[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

Cox, D.R. (1955) Some statistical methods connected with series of events.
Journal of the Royal Statistical Society B17, 129-164.

Cox, D.R. (1958) The regression analysis of binary sequences. Journal of
the Royal Statistical Society B20, 215-242.

Cox, D.R. (1983) Some remarks on overdispersion. Biometrika 70, 269-274.

Crowder, M.J. (1978) Beta-binomial ANOVA for proportions. Journal of
the Royal Statistical Society C27, 34-37.

Diggle, P.J. (1988) An approach to the analysis of repeated measurements.
Biometrics 44: 959-971.

Elston, R.C. and Grizzle, J.F. (1962) Estimation of time response curves
and their confidence bands. Biometrics 18, 148-159.

Frey, C.M. and Muller, K.E. (1992) Analysis methods for nonlinear models
with compound symmetric covariance. Communications in Statistics A21,
1163-1182.

Genest, C. and MacKay, J. (1986a) Copules archimédiennes et familles de
lois bidimensionnelles dont les marges sont données. Canadian Journal of
Statistics 14: 145-159.

Genest, C. and MacKay, J. (1986b) The joy of copulas: bivariate distribu-
tions with uniform marginals. American Statistician 40: 280-283.

Gennings, C., Chinchilli, V.M., and Carter, W.H. (1989) Response surface
analysis with correlated data: a nonlinear model approach. Journal of the
American Statistical Association 84, 805-809.

Gilmour, A.R., Anderson, R.D., and Rae, A.L. (1985) The analysis of bi-
nomial data by a generalized linear mixed model. Biometrika 72, 593-599.

Gouriéroux, C., Montfort, A., and Trognon, A. (1984) Pseudo maximum
likelihood methods: applications to Poisson models. Econometrica 52, 701—
720.

Hannan, M.T. and Carroll, G.R. (1981) Dynamics of formal political struc-
ture: an event-history analysis. American Sociological Review 46, 19-35.

Harvey, A.C. and Fernandes, C. (1989) Time series models for count or
qualitative observations. Journal of Business and Economic Statistics T:

407-423.

Hausman, J., Hall, B.H., and Griliches, Z. (1984) Econometric models for
count data and an application to the patents — R and D relationship.
Econometrica 52, 909-938.

11



32]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Heckman, J.J. (1978) Simple statistical models for discrete panel data de-
veloped and applied to test the hypothesis of true state dependence against
the hypothesis of spurious state dependence. Annales de I’INSEE 30-31,
227-269.

Heckman, J.J. and Borjas, G. (1980) Does unemployment cause future
unemployment? definitions, questions and answers from a continuous time
model of heterogeneity and state dependence. Economica 47, 247-284.

Heckman, J.J. and Singer, B. (1984a) Econometric duration analysis. Jour-
nal of Econometrics 24, 63-132.

Heckman, J.J. and Singer, B. (1984b) A method for minimizing the im-
pact of distributional assumptions in econometric models for duration data.
Econometrica 52, 271-319.

Heckman, J.J. and Singer, B. (1985, ed.) Longitudinal Analysis of Labor
Market Data. Cambridge: Cambridge University Press.

Heckman, J.J. and Willis, R.J. (1977) A beta-logistic model for the anal-
ysis of sequential labor force participation by married women. Journal of
Political Economy 85, 27-58.

Heitjan, D.F. (1991a) Generalized Norton-Simon models of tumour growth.
Statistics in Medicine 10, 1075-1088.

Heitjan, D.F. (1991b) Nonlinear modeling of serial immmunologic data: a
case study. Journal of the American Statistical Association 86: 891-898.

Hougaard, P. (1984) Life table methods for heterogeneous populations: dis-
tributions describing the heterogeneity. Biometrika 71, 75-84.

Hougaard, P. (1986a) Survival models for heterogeneous populations de-
rived from stable distributions. Biometrika 73, 387-396.

Hougaard, P. (1986b) A class of multivariate failure time distributions.
Biometrika 73, 671-678.

Jones, R.H. and Ackerson, L.M. (1990) Serial correlation in unequally
spaced longitudinal data. Biometrika 77: 721-731.

Jones, R.H. and Boadi-Boateng, F. (1991) Unequally spaced longitudinal
data with AR(1) serial correlation. Biometrics 47, 161-175.

Jorgensen, B. (1987) Exponential dispersion models. Journal of the Royal
Statistical Society B49, 127-162.

Jorgensen, B. (1992) Exponential dispersion models and extensions: a re-
view. International Statistical Review 60: 5-20.

12



[47]

Koch, G.G., Landis, J.R., Freeman, J.L., Freeman, D.H., and Lehnen, R.G.
(1977) A general methodology for the analysis of experiments with repeated
measurement of categorical data. Biometrics 33, 133—158.

Laird, N.M. (1991) Topics in likelihood-based methods for longitudinal data
analysis. Statistica Sinica 1, 33—-50.

Laird, N.M. and Ware, J.H. (1982) Random-effects models for longitudinal
data. Biometrics 38, 963-974.

Lancaster, T. (1990) The Econometric Analysis of Transition Data. Cam-
bridge: Cambridge University Press.

Lawless, J.F. (1987) Negative binomial and mixed Poisson regression.
Canadian Journal of Statistics 15, 209-225.

Lawless, J.F. and McLeish, D.L. (1984) The information in aggregate data
from Markov chains. Biometrika 71, 419-430.

Lindsey, J.K. (1992) The Analysis of Stochastic Processes Using GLIM.
Berlin: Springer Verlag.

Lindsey, J.K. (1993) Models for Repeated Measurements. Oxford: Oxford
University Press.

Marshall, A.W. and Olkin, I. (1988) Families of multivariate distributions.
Journal of the American Statistical Association 83: 834-841.

Mosimann, J.E. (1962) On the compound multinomial distribution,

the multivariate beta-distribution and correlations among proportions.
Biometrika 49, 65-82.

Muenz, L.R. and Rubinstein, L.V. (1985) Markov models for covariate
dependence of binary sequences. Biometrics 41, 91-101.

Oakes, D. (1982) A model for association in bivariate survival data. Journal
of the Royal Statistical Society B44, 414-422.

Oakes, D. (1986) Semiparametric inference in a model for association in
bivariate survival data. Biometrika 73, 353-361.

Oakes, D. (1989) Bivariate survival models induced by frailties. Journal of
the American Statistical Association 84, 487-493.

Palmer, M.J., Phillips, B.F., and Smith, G.T. (1991) Application of nonlin-
ear models with random coefficients to growth data. Biometrics 47, 623
635.

13



[62]

Potthoff, R.F. and Roy, S.N.(1964) A generalized multivariate analysis of
variance model useful especially for growth curve problems. Biometrika 51:
313-326.

Preisler, H.K. (1988) Maximum likelihood estimates for binary data with
random effects. Biometrical Journal 30, 339-350.

Prentice, R.L. (1986) Binary regression using an extended beta-binomial
distribution, with discussion of correlation induced by covariate measure-
ment error. Journal of the American Statistical Association 81, 321-327.

Seshadri, V. (1988) Exponential models, Brownian motion, and indepen-
dence. Canadian Journal of Statistics 16, 209-221.

Spilerman, S. (1972) The analysis of mobility processes by the introduction
of independent variables into a Markov chain. American Sociological Review
37, 277-294.

Tuma, N.B. (1976) Rewards, resources and the rate of mobility: a non-
stationary stochastic model. American Sociological Review 41, 338-360.

Tuma, N.B., Hannan, M.T., and Groeneveld, L.P. (1979) Dynamic analysis
of event histories. American Journal of Sociology 84, 820-854.

Vaupel, J.W. and Yashin, A.I. (1985) Heterogeneity’s ruses: some surpris-
ing effects of selection on population dynamics. American Statistician 39,
176-185.

Vonesh, E.F. and Carter, R.L. (1992) Mixed-effects nonlinear regression for
unbalanced repeated measures. Biometrics 48, 1-17.

West, M. Harrison, P.J., and Migon, H.S. (1985) Dynamic generalized lin-
ear models and Bayesian forecasting. Journal of the American Statistical
Association 80: 73-97.

Wilkinson, G.N. and Rogers, C.E. (1973) Symbolic description of factorial
models for analysis of variance. Journal of the Royal Statistical Society
C22, 392-399.

Williams, D.A. (1982) Extra-binomial variation in logistic linear models.
Journal of the Royal Statistical Society C31, 144-148.

Zeger, S.L. and Liang, K.Y. (1986) Longitudinal data analysis for discrete
and continuous outcomes. Biometrics 42, 121-130.

Zeger, S.L., Liang, K.Y., and Self, S.G. (1985) The analysis of binary lon-
gitudinal data with time-dependent covariates. Biometrika 72, 31-38.

14



