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Abstra
t

The demand for models of repeated measurements has known a phe-

nomenal growth in re
ent years, as appli
ations are found in all areas of

s
ienti�
 endeavour. In this review, similarities in the approa
hes to mod-

elling di�erent kinds of response variables, normal, dis
rete, and duration,

are emphasized. Any appropriate model should take into a

ount two pos-

sible types of sto
hasti
 dependen
e, random variability or heterogeneity

among units in the population and, in longitudinal studies, sto
hasti


time dependen
e among responses. Finally, a number of problem areas

for further resear
h are outlined.
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1 Introdu
tion

Repeated measurements, as the name suggests, are observations of the same


hara
teristi
 whi
h are made several times (but not ne
essarily separated in

time!). What distinguishes su
h observations from those in more traditional

statisti
al data modelling is that

� the same variable is measured on the same observational unit more than

on
e: the responses are not independent as in the usual regression analysis

and

� more than one observational unit is involved: the responses do not form

a simple time series.

Thus, one spe
ial 
hara
teristi
 of repeated measurements is that more than

one observation on the same response variable is available on ea
h observational

unit. For a set of responses on ea
h of several units, those on the same one

may often, but not always, be expe
ted to be more 
losely related than those
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among di�erent ones. Thus, we are in a situation of sto
hasti
ally dependent

data whi
h must be modelled by some form of multivariate methods. This may

be distinguished from more general multivariate methods whi
h treat interde-

penden
e among di�erent types of response variables.

Repeated measurement of the same variable on the same unit may be ne
-

essary for a number of reasons.

� Repeated observation may be the only way of obtaining the required mea-

surement, as in 
ounting the o

urren
es of some phenomenon.

� Interest may 
entre on the evolution of some response, given initial 
on-

ditions whi
h may or may not be �xed experimentally. Simple growth


urves are the most 
ommon example.

� The investigator may wish to 
ompare the e�e
ts of 
ontinued adminis-

tration of some treatment over time.

� Di�erent treatments may need to be 
ompared in a situation where vari-

ability among units is an important un
ontrollable fa
tor. To in
rease

pre
ision, intra-unit 
omparisons of the di�erent treatments are ne
essary.

� One may want to study the total e�e
ts of di�erent sequen
es of treat-

ments, as in the study of 
rop rotations in agri
ulture.

In re
ent years, the literature on repeated measures has rea
hed explosive pro-

portions. Lindsey (1993) provides a bibliography over over 1300 items to the

end of 1992, and this is far from 
omplete. Here, only a few of the more im-

portant highlights 
an be tou
hed upon. Emphasis will be pla
ed on the use of

similar models for di�erent types of response variables.

2 Types of responses

In the statisti
al literature, the most 
ommon models for repeated responses as-

sume them to be 
ontinuous measurements taking any real value. Su
h models

are most 
ommonly based on some variation of the multivariate normal distri-

bution. Mu
h of the original work on repeated measurements evolved around

this type of response, as developments and spe
ial 
ases of the Pottho� and Roy

(1964) growth model,

E[Y℄ = XBZ

whereY andX are the response and design matri
es, whileB is a C�P lo
ation

parameter matrix and Z is a P � R matrix of 
ovariates 
hanging with the

responses on a unit, most often simply a polynomial over the R points in time. In

this general multivariate model, the varian
e-
ovarian
e matrix, �, is assumed

to have an unstru
tured form. Most subsequent developments have 
on
entrated
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on more 
omplete spe
i�
ations of this matrix (Diggle, 1988; Elston and Grizzle,

1962; Jones and A
kerson, 1990; Laird and Ware, 1982), although some work

has been done on nonlinear models for the lo
ation parameters (Berkey, 1982;

Frey, 1992; Gennings, Chin
hilli, and Carter, 1989; Palmer, Phillips, and Smith,

1991; Vonesh and Carter, 1992), and o

asionally both simultaneously (Heitjan,

1991a, b).

However, 
ategori
al and 
ount data play very important roles in s
ienti�


observation. For example, they are the prin
ipal type of response in panel

studies. Counts are always repeated event data, where nothing distinguishes the

events on a unit, so that they are aggregated as the 
ount. On the other hand,


ategori
al data are only repeated observations of events if they o

ur to the

same unit, but are not aggregated be
ause treatments or 
ovariates distinguish

among them. However, su
h events may be aggregated as frequen
ies a
ross

units having exa
tly the same pro�les of explanatory variables. The di�eren
e,

from our perspe
tive, is that, for a 
ount, the response of interest is the frequen
y

of o

urren
e of one or more events, ne
essarily on the same unit, while, for


ategori
al data, the response is an indi
ator of whi
h of a number of events has

o

urred. Categori
al data are only repeated measurements if observed several

times on the same unit.

All of the well-known work on overdispersion (Anderson, 1988; Ashby et

al., 1992; Breslow, 1984; Cox, 1983; Crowder, 1978; Gouri�eroux, Montfort,

and Trognon, 1984; Hausman, Hall, and Grili
hes, 1984; He
kman and Willis,

1977; Lawless, 1987; Mosimann, 1962; Prenti
e, 1986; Williams, 1982) and

Markov 
hains (Anderson and Goodman, 1957; Billingsley, 1961; Chat�eld,

1973; Cox, 1955, 1958; Lawless, and M
Leish, 1984; Muenz, and Rubinstein,

1985; Spilerman, 1972; Zeger, Liang, and Self, 1985) is relevant here.

Another important area of s
ienti�
 study involves the observation of dura-

tions, and, more generally, of positive-valued responses. These usually will have

skewed marginals for whi
h a normal distribution is not suitable. The 
lassi
al

solution of data transformations is unsatisfa
tory, be
ause it provides no infor-

mation about the underlying data generating me
hanism. The spe
ial 
ase of

durations is even more 
omplex.

If we measure survival in living beings, there 
an be no repetition, be
ause

death o

urs at the end. On the other hand, 
onsider the 
lassi
al measurement

of periods between su

essive breakdowns of a ma
hine or the su

ession of

periods of unemployment or of illness of individuals. This is often known as

an event or life history study; many of the most important developments have


ome in the so
ial s
ien
es (Blossfeld, Hamerle, and Mayer, 1989; Hannan,

and Carroll, 1981; He
kman, 1978; He
kman and Borjas, 1980; He
kman and

Singer, 1985; Lan
aster, 1990: Tuma, 1976; Tuma, Hannan, and Groeneveld,

1976), more re
ently penetrating into the more biologi
al �elds (Aalen et al.,

1980; Andersen and Borgan, 1985; Clayton, 1988).

A 
lose relationship exists between durations and 
ounts in longitudinal

event history data. This is 
lear in the 
ounting pro
ess approa
h to dura-
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tion data, where the number of events is a

umulated over a period of time,

thus uniting a duration and a 
ount.

Event history data are pe
uliar in that the response, whether taken as

elapsed duration between events or 
umulated 
ounts of events, is a dire
t fun
-

tion of time. This 
ontrasts with many other longitudinally observed repeated

responses, whi
h are simply attributes of the unit, su
h as blood pressure, mea-

sured at various points in time. They will have an evolution, but not ne
essar-

ily a

umulation. Intermediate are the `growth' type responses, whi
h have a

predominant tenden
y, either to be
ome larger or smaller, usually up to some

asymptoti
 limit, but where su

essive di�eren
es are not ne
essarily in the

same dire
tion: a growing rat may lose weight over one observation period, but

events 
annot disappear after they have o

urred.

3 Heterogeneity

The units whi
h are observed for repeated measures will usually be inherently

heterogeneous. Some will systemati
ally respond more strongly than others. In

medi
al studies, su
h as survival analysis, this is known as frailty. In studies

of 
ounts of a

idents, it is 
alled proneness. In both 
ases, the rate at whi
h

events is o

urring is varying in some unknown way a
ross the observation units.

Explanatory variables, whi
h might explain these di�eren
es, are not available,

and may not be of interest in the study at hand. In other words, the variability

of responses on a unit will often be smaller than that a
ross units. If responses

on a unit were independent, the 
ovariability among them would be zero. In


ontrast, here, we shall require a uniform intra-
lass or intra-unit 
ovariability

model. All inter-relationships among responses within a unit are equal, but

nonzero. In this way, we 
an model dire
tly the sto
hasti
 dependen
e stru
ture

of our observations.

For 
ount data, we �nd the overdispersion models mentioned above. For

normally distributed data, we have varian
e 
omponents models. The varian
e-


ovarian
e matrix in the Pottho� and Roy model is 
onstrained to have a 
on-

stant o�-diagonal 
ovarian
e. Unfortunately, generalization to other models

based on other types of responses is rarely easy. Generally, non-normal dis-

tributions require the spe
i�
ation of all higher order moments and these are

often 
losely related to the mean or lo
ation parameter. Suitable multivariate

distributions are not often available.

A se
ond fruitful approa
h is to assume that some parameter des
ribing the

di�erent rea
tions of the units is varying in a random way throughout the pop-

ulation. This is known as a random e�e
ts model. Suppose that the distribution

of responses, given the parameter value, is f(yj�) and that the random distri-

bution of the parameter is given by p(�; 
). Then, the marginal distribution of
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the response 
an be obtained by integration:

f(y; 
) =

Z

f(yj�)p(�; 
)d�

It turns out that, if both distributions are normal, the result is identi
al to the

varian
e 
omponents model mentioned above.

One spe
ial 
ase of parti
ular interest is when p(�; 
) is the 
onjugate distri-

bution to f(yj�), be
ause then f(y; 
) 
an be obtained in 
losed form. For the

exponential family,

f(yj�) = e

�

T

t(y)��(�)

a 
onjugate distribution, also a member of the exponential family, always exists:

p(�; 


0

;
) = e

�

T


�


0

�(�)

as it does for generalized linear models. The normal random e�e
ts model is one

su
h 
ase, but other well-known examples in
lude the negative binomial distri-

bution for 
ounts and the beta-binomial distribution for overdispersed binomial

data. If a 
onjugate distribution is not available or not suitable, numeri
al

integration must usually be performed.

If the 
ovariates are introdu
ed into the 
onditional distribution, f(yj�),

g(�

i

) =

X

k

�

ik

x

ik

where g(�) is a link fun
tion, we have a `subje
t-spe
i�
' model. In this 
ase,

�

i0

is usually taken as random. Here, the x

ik


an distinguish among responses

on a unit, as well as among units.

If the 
ovariates are introdu
ed after integration, into the marginal distribu-

tion, f(y; 
),

g(


i

) =

X

k

�

ik

x

ik

we have a `population-averaged' model. Obviously, in this latter 
ase, 
ovari-

ates whi
h distinguish among responses on a unit 
annot be used; the x

ik

must

remain 
onstant for all responses on a unit. This model provides an averaged

measure of di�eren
es (in treatments, et
.) over responses among units. How-

ever, for normal models, the two are identi
al.

Various heterogeneity models have been suggested for 
ategori
al data (Ashby

et al., 1992; Ko
h et al., 1977; Laird, 1991; Preisler, 1988) as well as for du-

ration data (Clayton, 1978; Clayton and Cuzi
k, 1985; He
kman and Singer,

1984a, b; Hougaard, 1984, 1986a, b; Lan
aster, 1990; Oakes, 1982, 1986, 1989).

Parti
ular 
are must be taken in the latter 
ase. Usually, only a `window' is
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available on the event history. If the population is heterogeneous, events of the

more frail or prone units will be over-represented (Blossfeld and Hamerle, 1992;

Vaupel and Yashin, 1985).

An extension of the random e�e
ts model, in a regression situation, is to

make a number of the regression 
oeÆ
ients random, a random 
oeÆ
ients

model. This has been extensively studied in the normal 
ase (Elston and Grizzle,

1962; Laird and Ware, 1982),

E[Yj�℄ = XBZ+�V � � MVN(0; I
�)

where Z and V are polynomials in time, so that the model 
an be used to in-

du
e 
omplex stru
tures in the varian
e-
ovarian
e matrix. However, the a
tual

meaning of su
h 
oeÆ
ients is usually diÆ
ult to interpret. They are also dif-

�
ult to extend to the nonlinear and nonnormal 
ases, so that they should be

avoided unless there is solid s
ienti�
 reasons for using them.

Be
ause of the diÆ
ulties in dire
tly 
onstru
ting models of 
ovariability

among responses for non-normal data, 
ertain non-model based pro
edures,


alled generalized estimating equations, have been put forward (Gilmour, An-

derson, and Rae, 1985; Liang and Zeger, 1986). These are based on the esti-

mating equations for univariate generalized linear models, into whi
h a varian
e-


ovarian
e is arti�
ially inserted,

N

X

i=1

Z

i

diag

�

��

ik

��

ik

�

[U

1

2

i

R

i

U

1

2

i

℄

�1

d

i

= 0

where Z

i

is the P �R design matrix for the unit, d

i

= y

i

� �

i

a R� 1 ve
tor,

and � the linear regression stru
ture, with R some 
orrelation matrix and U

i

=

diag(var[Y

ik

℄). The result is that the relation of the estimating equations to

a likelihood fun
tion, and to a probability-based model, is usually destroyed.

Besides the diÆ
ulty in interpreting the results of su
h an approa
h, it has the

additional handi
ap that inferen
es 
an only be performed using the notoriously

poorly performing asymptoti
 standard errors of the parameter estimates (Wald

tests).

Heterogeneity is a general problem in repeated measurements data. If the

responses on a unit are re
orded more or less simultaneously, as, for example,

in family and litter studies, agri
ultural split plots, or similar organs in the

same body, this will be the only type of sto
hasti
 dependen
e whi
h must be

modelled.

4 Longitudinal data

Many repeated measurement studies involved 
olle
tion of data on units over

time. Even survival studies ne
essitate 
ontinuous observation over time, al-

though only one �nal event is being re
orded. When time is involved, a se
ond
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kind of sto
hasti
 dependen
e among observations on a unit will usually be

present: observations 
loser together in time will often be more 
losely related.

Be
ause the series on any given unit will usually be fairly short, a �rst order

Markov model will usually be adequate. Note, however, that, in su
h short

periods, the series will often be nonstationary.

For normally distributed data, autoregression models will usually be suitable.

As for heterogeneity, a identi
al models 
an be obtained by dire
tly modelling

the varian
e-
ovarian
e matrix or by 
onditioning on lagged variables. Some

fairly 
omplex models have been developed in this domain, 
ombining random

e�e
ts with autoregression (Diggle, 1988; Heitjan, 1991a, b; Jones and A
kerson,

1990).

Again, for non-normal data, it is usually diÆ
ult to model the sto
hasti


dependen
e dire
tly, so that 
onditioning must be used

g(�

ik

) = �y

i;k�1

+

X

k

�

ik

x

ik

For 
ategori
al data, Markov 
hains are easily handled as logisti
 or log linear

models (Lindsey, 1992). Counts 
an also be handled by 
onditioning in log lin-

ear models. However, 
ounts of events a

umulated over time may be subje
t

to 
ontagion, a time dependen
e among events. As is well known, if only aggre-

gated 
ounts are available, this 
annot be distinguished from the proneness of

heterogeneous units. The two models 
an only be 
ompared if the time spa
ing

of the events is available. And, of 
ourse, both proneness and 
ontagion may

simultaneously be present.

The situation for event history data is more 
omplex. In the simplest 
ase,

intervals are independent and identi
ally distributed, so that we have a renewal

pro
ess and all of the standard models of survival analysis 
an be applied. When

there is time dependen
e, 
onditioning 
an be introdu
ed to 
reate nonhomoge-

neous pro
esses. One simple and very useful model is the birth pro
ess, where


onditioning is on the number of previous events, but one might also 
ondition

on the length of the previous period(s). Within a period, 
onditioning on time

sin
e the previous event is the same as repla
ing a Poisson pro
ess by a non-

homogeneous one, su
h as a Weibull, gamma, or extreme value pro
ess. If an

event signals a 
hange of state for the unit, we have a semi-Markov or Markov

renewal pro
ess.

The situation be
omes more diÆ
ult when there are time-varying 
ovariates

whi
h 
an 
hange within the interval. Then, the distributions of the intervals


an no longer be dire
tly modelled. Instead, we have to look at the intensity of

the event pro
ess, making it depend on the 
ovariates, as well as any appropriate

information about previous events. This is the 
ounting pro
ess approa
h, whi
h


an be modelled as a log linear model for the presen
e or absen
e of an event

in ea
h small observation period.

Be
ause the 
orrelation matrix, R, 
an have any arbitrary form, generalized
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estimating equations 
an also be used for longitudinal data, although the same

reservations about their interpretation still hold.

It 
annot be emphasized too mu
h that, for all types of responses, both

heterogeneity and time sto
hasti
 dependen
e should be 
onsidered. Both may

not prove ne
essary in any single 
ase, but their presen
e should not be ex
luded

a priori. They provide valuable information, in addition to 
ovariate e�e
ts,

whi
h the s
ientist always �nds very useful. As well, negle
ting one 
an indu
e

spurious dependen
e of the other type. Even if the sto
hasti
 dependen
e is

not of dire
t interest, ignoring it and assuming independen
e among repeated

observations on a unit will make the e�e
ts of interest more signi�
ant than

they really are. Su
h an independen
e model operates as if there were more

information in the data than a
tually exists.

5 Prospe
ts

Although a few suitable multivariate distributions are slowly being developed

(Arnold and Strauss, 1991; Genest and Ma
Kay, 1986a, b; J�rgensen, 1992;

Marshall and Olkin, 1988), the area is lagging far behind the 
omplex require-

ments of modelling repeated measures data. At present, 
onditioning, whether

on random parameters or lagged responses, is the only realisti
 way to set up

most reasonable non-normal models.

It is surprising how many problems of repeated measurements 
an be 
oer
ed

into the generalized linear model 
ontext, or, even more generally, as exponential

dispersion models (J�rgensen, 1987, 1992)

f(y;�; �

2

) = a(�

2

;y)e

[y

T

���(�)℄=�

2

The latter provide the generalization of the independent and identi
ally dis-

tributed in
rements models of Brownian motion and Poisson pro
esses to more

general pro
esses, su
h as the Bernoulli, inverse Gaussian, and gamma (J�rgensen,

1992; Seshadri, 1988). They are one promising avenue for developing the mul-

tivariate models ne
essary for repeated measures, espe
ially for nonstationary

longitudinal data. Another avenue whi
h should be investigated is the set of


onditions under whi
h the s
alar dispersion parameter, �

2

, in these models,


an be generalized to a ve
tor or matrix. The bivariate exponential 
onditionals

models of Arnold and Strauss (1991) are examples.

Linear lo
ation models, in
luding polynomials, are, at best, simple approx-

imations to reality, where evolution towards an asymptote is the usual situa-

tion. As mentioned, a rapidly in
reasing amount of work on nonlinear models,

with random e�e
ts and autoregression, is being produ
ed for normal responses.

However, little is yet available for non-normal data. Models handle heterogene-

ity or time dependen
e, and rarely nonlinear regression. Mu
h work needs to

be done here.
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In any data re
ording done over time, 
ensoring, su
h as dropouts or with-

drawals, and other types of missing observations, are a major problem. Fairly

strong assumptions usually have to be made about the randomness of the `miss-

ing me
hanism'. Certain results, parti
ularly using martingale stopping times,

are now available from survival analysis, but these need to be further extended

for repetitions. The problem of heterogeneity in event history data was noted

above. But even in simpler 
ases, su
h as growth 
urves, the impli
ations of

some units having time to rea
h an asymptote and others not, has not been

studied.

As well, observation may often not be possible at regular intervals on ea
h

unit. Then, 
ontinuous time models are required. These are available for nor-

mally distributed data (Heitjan, 1991a, b; Jones and A
kerson, 1990; Jones and

Boadi-Boateng, 1991), but little work has yet been done in other 
ontexts. For

example, few models are available for unequally spa
e 
ategori
al or 
ount data.

When 
ontinuously 
hanging 
ovariates, or responses, are involved, strong

assumptions have to be made about their values between observation points.

The e�e
ts of su
h assumptions need to be investigated.

Virtually no statisti
al 
omputer pa
kages are available for su
h multivari-

ate responses. What is required is the next generation of software to follow the

GLIM modelling strategy. Sto
hasti
 dependen
e stru
tures, for heterogene-

ity and time dependen
e, must be easily sele
table for a variety of non-normal

models, in 
ombination with a simple syntax whi
h extends the Wilkinson and

Rogers (1973) notation to nonlinear lo
ation models. Extensions of the Kalman

�lter, whi
h have already proven their worth in normal models (Jones and A
k-

erson, 1990), seem to be the most promising algorithm for estimation (West,

Harrison, and Migon, 1985).

With the ready availability of rapidly in
reasing 
omputing power, one ob-

sta
le to �tting su
h 
omplex models has been removed. However, further study

is needed for the 
hoi
e of stable initial values in iterative routines, and of ways

of monitoring 
onvergen
e before su
h software will be a

eptable for everyday

statisti
al use.

At present, repeated measurements is an area where s
ientists are generating

vast quantities of data while the statisti
ians are in
apable of providing them

with the suitable models whi
h 
an be routinely applied.
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